ENERGY CONSUMPTION IN TERMINALS BENCHMARKING AND TECHNOLOGICAL CHANGE

Luisa Spaggiari¹, Gordon Wilmsmeier^{1,2}, Lara Pomaska², Max Mühlemeyer³, Johannes Meuer³

² Hapag-Lloyd Center for Shipping and Global Logistics (CSGL)
 ³ Center for Sustainable Supply Chains and Logistics (CSLS)
 Kühne Logistics University (KLU)
 Hamburg | Germany

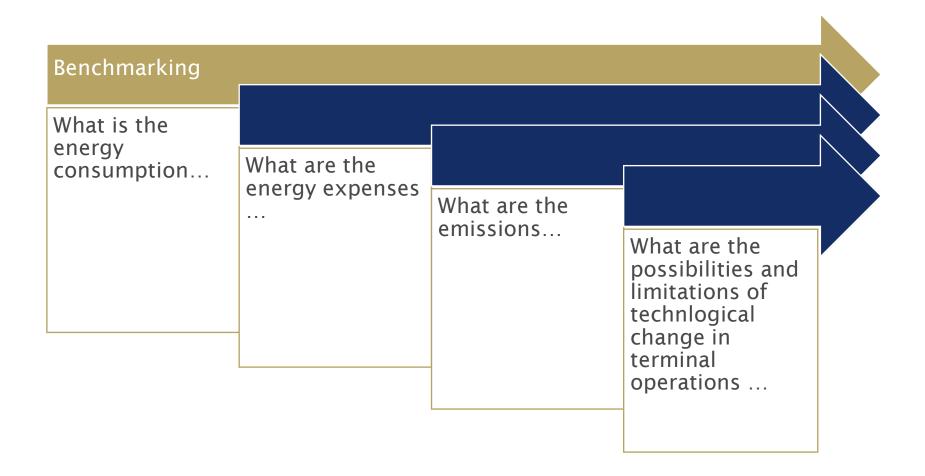
¹ Kühne Professorial Chair in Logistics School of Management | Universidad de los Andes Bogotá | Colombia

KÜHNE LOGISTICS UNIVERSITY

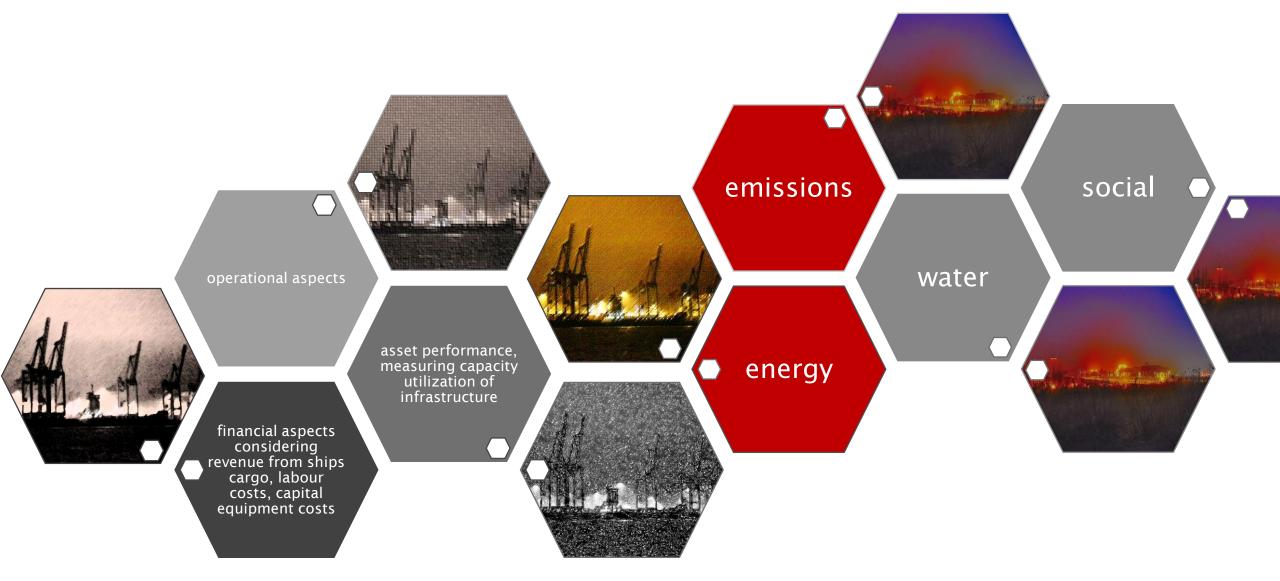
IMSF Annual Conference 2022 Hamburg, 26. October 2022

KÜHNE LOGISTICS UNIVERSITY

WHY SHOULD ENERGY ISSUES BE DISCUSSED IN THE CONTEXT OF PORTS?



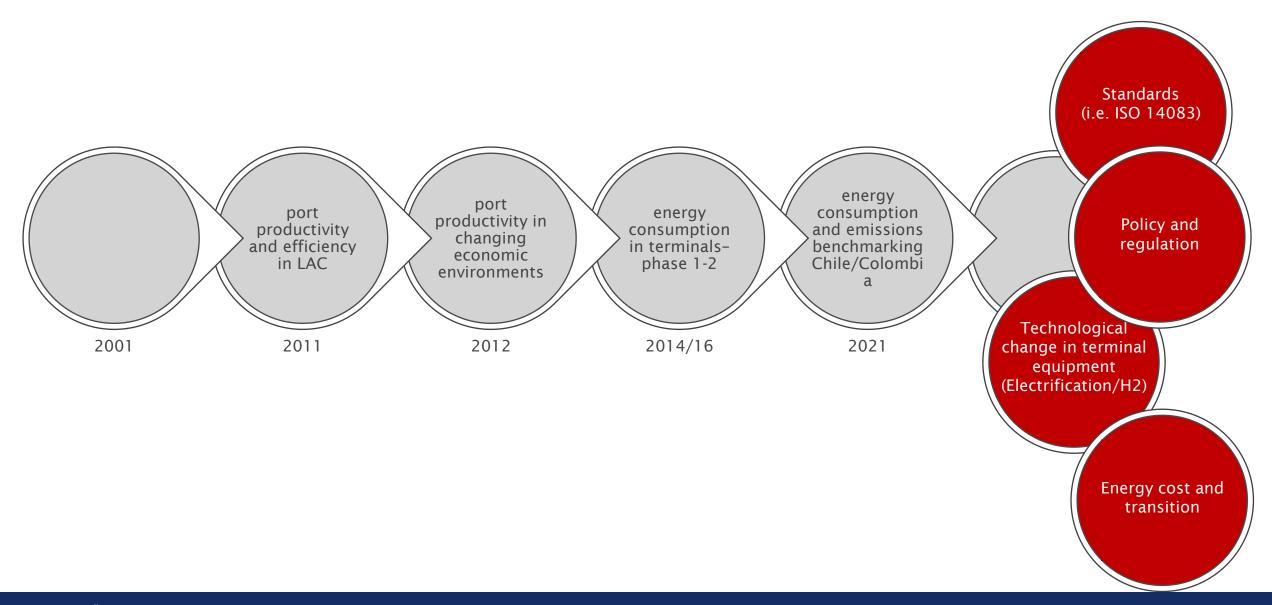
ENERGY PERFORMANCE AND SERVICE QUALITY OF PORTS IN LOGISTICS CHAINS


KÜHNE LOGISTICS UNIVERSITY

RESEARCH QUESTIONS

... for handling a container in a terminal?

CONSTRUCTING A WIDER SET OF MEASURES OF PERFORMANCE

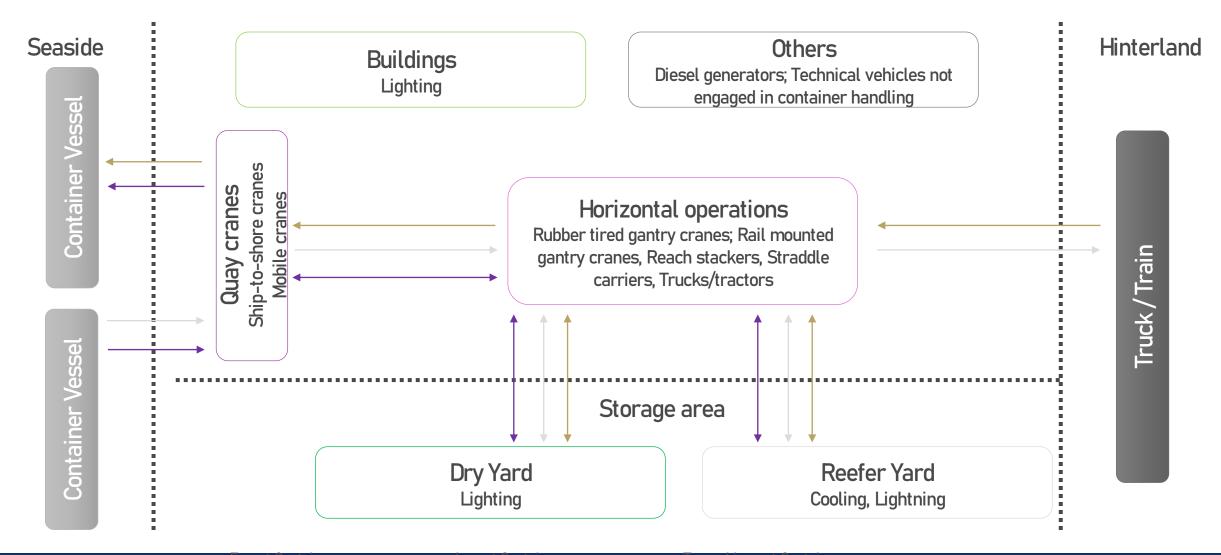


LITERATURE REVIEW

Activity-based cost approach				the impact processe	e analysis of of terminal s and the ₂ -emissions	lnteger problem	Pure technical, environme ntal efficiency (PTEE)	WPCI and IPCC Guidelines	based measure and Response- based procedure		
ECLAC (2014)	Wilmsmei er et al. (2014)	ECLAC (2015)	Wilmsmei er & Spengler (2016)	Spengler & Wilmsmei er (2019)	Wilmsmei er, G. (2020)	Geerlings & van Duin (2011)	Martínez- Moya, et al. (2019)	Sha et al. (2016)	Na et al. (2017)	Atulya et al. (2017)	Quintano et al., (2020)
4 container terminals	13 container terminals	41 container terminals	35 container terminals	45 container terminals	23 multipurp ose terminals	1 container terminal	1 container terminal	10 container terminals	8 container terminals	1 multipurp ose terminal	24 container terminals
2014	2011- 2012	2010- 2013	2012 - 2015	2012- 2016	2014 - 2017	2006 - 2011	2011	2007- 2009	2005 - 2014	2014 - 2015	2005 - 2014
Chile	Southern cone countries	Latin America and the Caribbean	Latin America and the Caribbean	16 countries	Colombia	Europe	Spain	China	China	India	Europe

KÜHNE LOGISTICS UNIVERSITY

FROM TERMINAL PRODUCTIVITY TO SUSTAINABLE PERFORMANCE



METHODOLOGY

as Alles INEINE VILLE

100

AN ACTIVITY BASED APPROACH TO ALLOCATE ENERGY CONSUMPTION IN CONTAINER TERMINALS

FORMULA ENERGY CONSUMPTION

$$TC_{ij} = \sum_{z=1}^{n} (QCC_{ij} + HOC_{ij} + CRC_{ij} + BC_{ij} + LC_{ij} + OC_{ij} + GEN_{ij}) + UC_{ij}$$

where:

z = type of energy

TC_{ii} = Total energy consumption in terminal i in period j

QCC_{ii} = Energy consumption within the process cluster of quay cranes

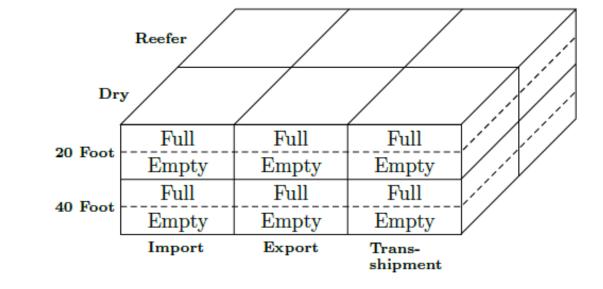
- HOC_{ii} = Energy consumption within the process cluster of horizontal operations
- CRC_{ij} = Energy consumption within the process cluster of reefer cooling
- BC_{ii} = Energy consumption within the process cluster of buildings
- LC_{ii} = Energy consumption within the process cluster of lighting
- OC_{ii} =Energy consumption within the process cluster of others
- GEN_{ii} = Energy consumption within the process cluster of generators
- UC_{ii} = Undefined consumption

EXAMPLE: FORMULA QUAY CRANE AND HORIZONTAL ACTIVITY CLUSTER

$$QCC_{ij} = \sum_{z=1}^{n} (EC_{ijk}) + UC_{ijk}$$

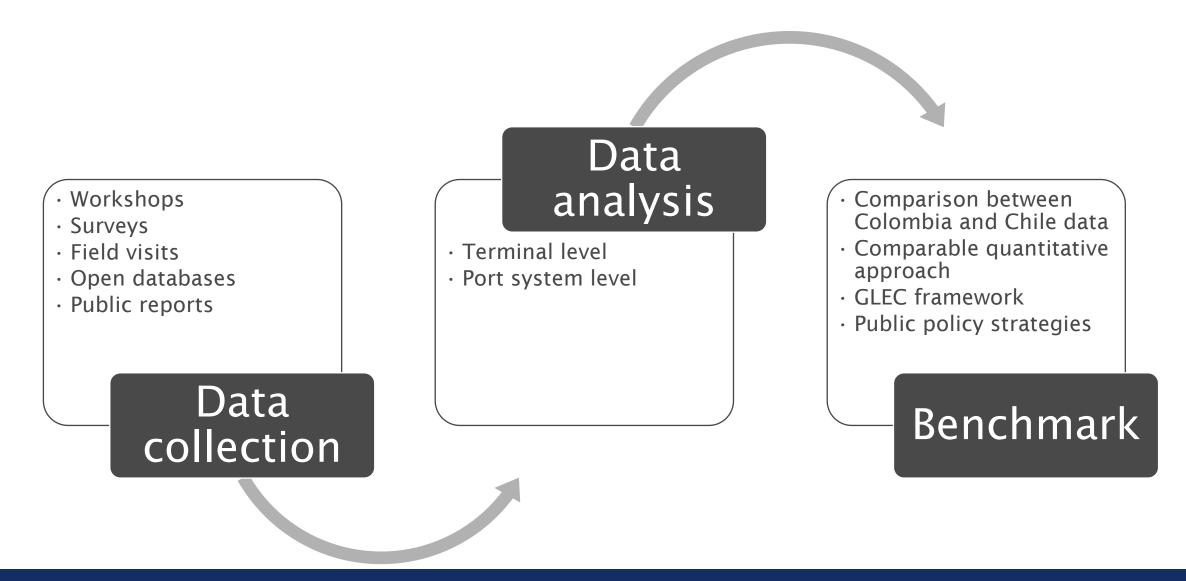
where:

- z = type of energy
- K = type of equipment / model
- EC_{ijk} = Total energy consumption in terminal i in period j UC_{ijk} = Undefined consumption


$$HOC_{ij} = \sum_{z=1}^{n} RMGC_{ijk} + RTGC_{ijk} + RSC_{ijk} + SCC_{ijk} + TRC_{ijk} + UC_{ijk}$$

Where:

RMG_{ijk} = rail-mounted gantry cranes. RTG_{ijk} = rubber-tired gantry cranes. Rs_{ijk} = reach stacker SC_{ijk} = straddle carrier TRC_{ijk} = trucks UC_{ijk} = undefined consumption


EXAMPLE: CONTAINER TERMINALS ARE MULTI PRODUCT OPERATIONS

- differentiation necessary between:
 - container types (i.e., dry, reefer)
 - transhipment and impo/expo cargo
 - full and empty

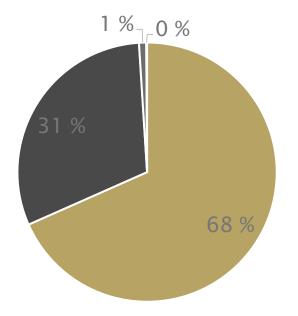
Thus, different "products" have different requirements and performance

RESEARCH PROCESS

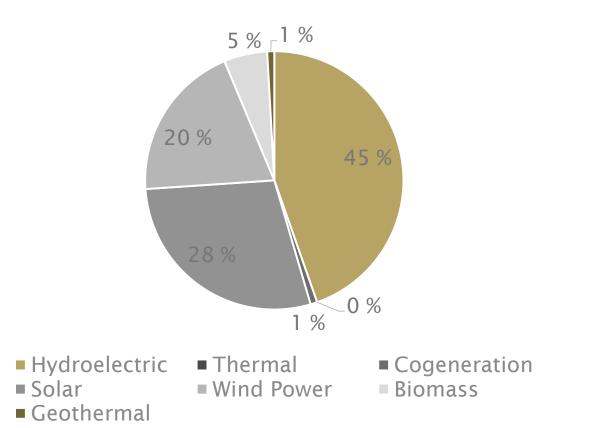
BENCHMARKING

as Alles VILLING VILLE

KÜHNE LOGISTICS UNIVERSITY


100

ECONOMIC INFORMATION


Economic indicators	Chile	Colombia
GDP per Capita (USD) (2017)	14,998.82	6,376.71
GDP per Capita (USD) (2020)	13,231.70	5,322.77
Diesel price per Liter (2017)	1.14	0.36
Diesel price per Liter (2020)	1.05	0.27
Emissions per Kwh (g de CO ₂)	383.40	164.38

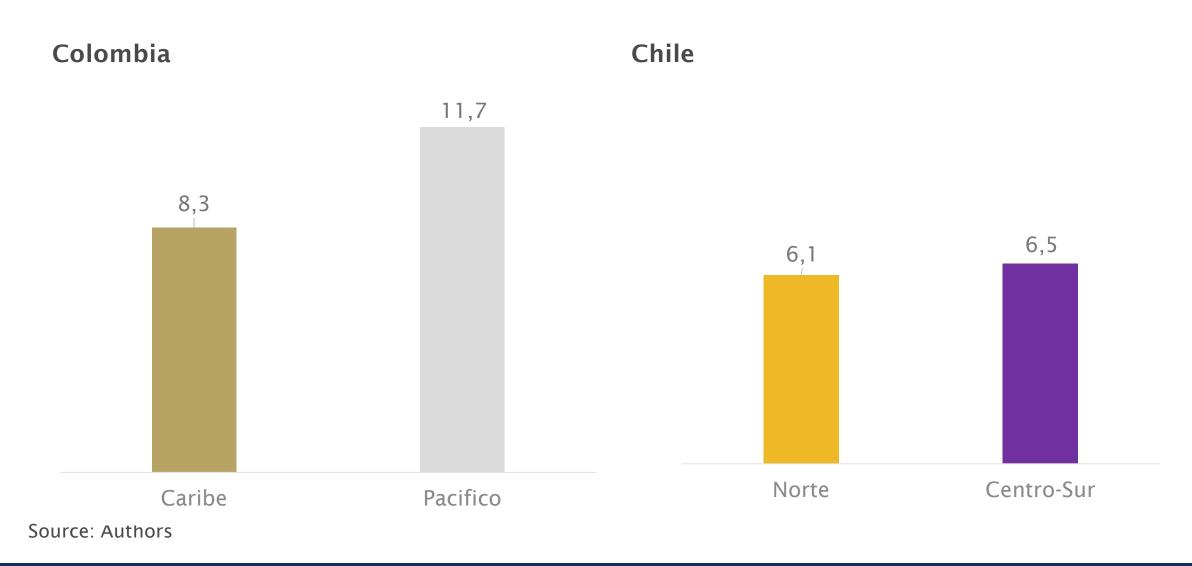
ENERGY GENERATION

Colombia

Chile

Contraction of the local division of the loc

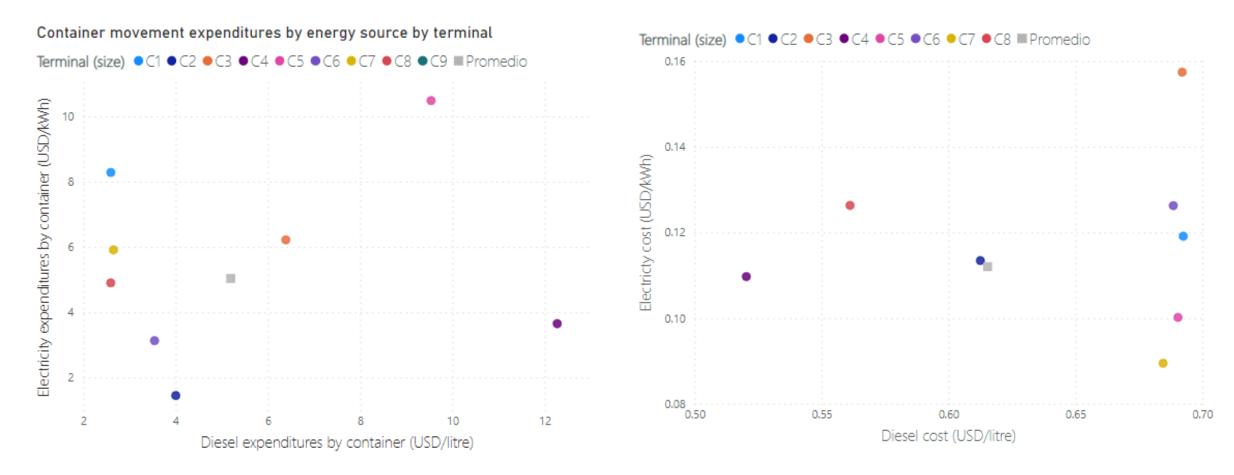
TENL

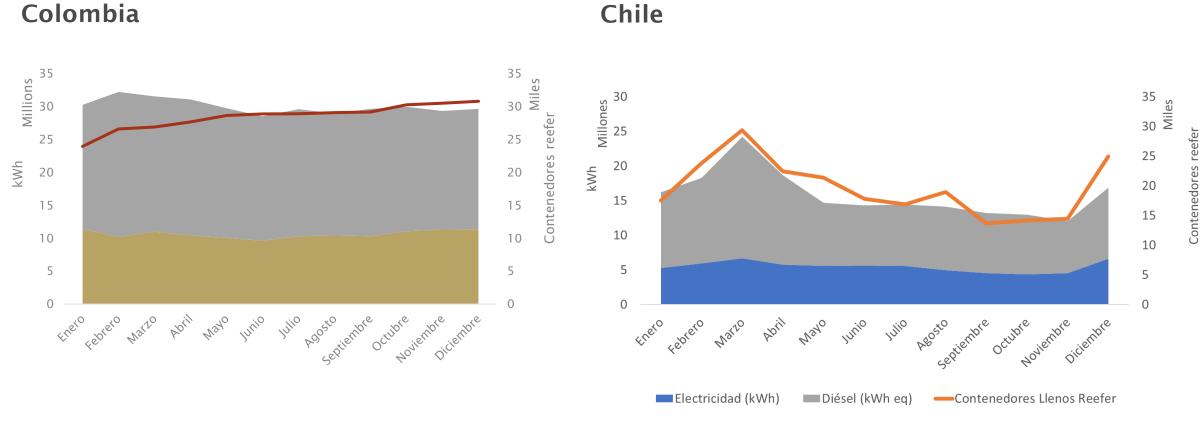

Hydroelectric Thermal Cogeneration Solar

KEY ENERGY KPI PORT SECTOR

КРІ	Chile 2014* Color	mbia 2017** Ch		Colombia 2020
Movements (millions of containers)	1.1	2.23	1.25	2.85
Diesel consumption (millions of liters)	9.9	17.56	11.25	21.27
Electricity consumption (GWh)	40.7	106.83	65.32	127.4
Energy consumption (GWhe)	108.5	339.9	202.42	360.46
Energy expenditures (USD millions)		15.87	12.85	30.7

* ECLAC, 2015: ** Wilmsmeier, 2020, *** Ministerio de Transporte y Telecomunicacoines, Chile, 2022,


AVERAGE ENERGY EXPENSE PER CONTAINER, CURRENT USD/BOX, 2020

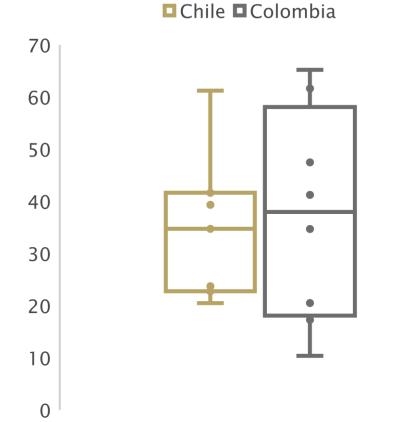

COLOMBIA, DISPERSION OF ENERGY EXPENSES, 2020

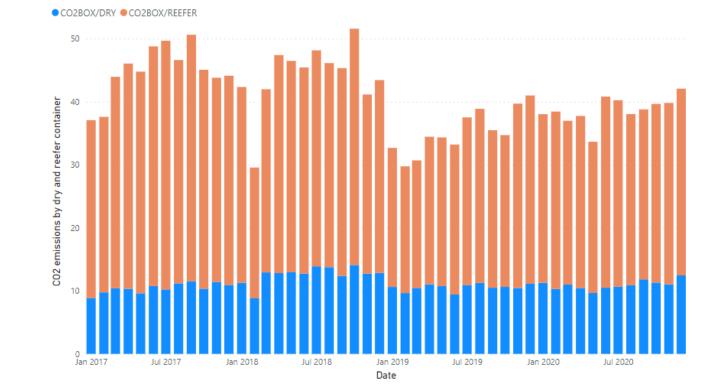
By movement

By energy unit

ENERGY CONSUMPTION AND REEFER CONTAINER MOVEMENTS PER MONTH

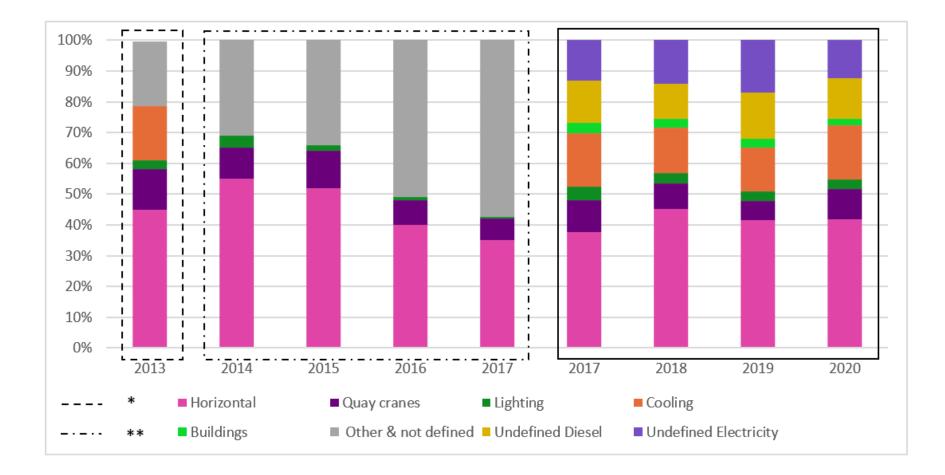
Electricidad (kWh) Diésel (kWh eq) — Contenedores Llenos Reefer


Source: Authors


KÜHNE LOGISTICS UNIVERSITY

EMISSIONS PER CONTAINER, 2020

The general "normal" view


A differentiated view

Source: Authors

CLUSTERS OF ENERGY CONSUMPTION, COLOMBIA, 2013 - 2020

TECHNOLOGICAL CHANGE IN HORIZONTAL OPERATIONS HYDROGEN EQUIPMENT

any and a faile

ALT INLINE VIE

A FEW KEY MESSAGES

Transition from fossil fuels to potentially renewable fuels in port terminal operations

What do we know?

- Public interest is given
- H₂ is part of sustainability efforts, also in Germany
- Horizontal transport is defined as the biggest share of energy consumption and energy costs on a terminal and can yield the most potential of CO₂ savings

What do we want to know?

- Which types of vehicles can be powered by H₂?
- Which kind of terminals should consider H₂?
- What are important KPI's?

How can ports use H₂ in terminal vehicles?

EXAMPLES OF H₂ PROJECTS IN PORTS

Location/Company	Project	Source	
	Pilot - H ₂ Reach Stacker	H ₂ PORTS (n.db)	
Port of Valencia, Spain	Pilot - H ₂ Yard Tractor	H ₂ PORTS (n.dc)	
	Pilot - mobile H ₂ refueling Station	H ₂ PORTS (n.da)	
Port of Auckland, New Zealand	Renewable diesel fuel and H ₂ powered container equipment	World Port Sustainability Program (WPSP, 2018)	
Ports of Long Beach and Los Angeles, USA	Multiple zero-emission cargo handling vehicles, including H ₂ FC yard trucks	WPSP (2019a, 2019b)	
Mitsui O.S.L Lines & Mitsui E&S Machinery	Joint initiative to introduce H ₂ powered port cargo handling machineries, including rubber-tired gantry yard crane	Mol O.S.K Lines (2021)	
Port of Antwerp, Belgium	H ₂ powered truck initiative in Belgium	Port Technology (2021)	
Port of Rotterdam, The Netherlands	H ₂ production plant in Maasvlakte area, H ₂ usage as transport fuel, H ₂ transport to other industries	Port of Rotterdam (n.d.)	

INTRODUCING H₂ AND THE TECHNICAL SIDE

H₂ is an energy carrier not an energy source!

Production

- H₂ production from any primary energy source
- H₂s CO₂ emissions are vastly dependent on the chosen production method

Usage as a fuel

- Usage either in traditional Internal Combustion Engines or in fuel cell technologies
- Fuel cells produce electricity to power the vehicle, with external tanks providing the H₂ in a controlled flow

LET'S COMPARE FUEL CELLS TO BEVS AND TRADITIONAL ICES

	Fuel Cell Technology	BEV	ICE
Strengths	 High driving ranges Low refueling times Low GHG emissions (no scope 1 emissions) 	 Simple functionality Low GHG emissions (no scope 1 emissions) 	 Low vehicle costs/ infrastructure investments High driving ranges Low refueling times
Weaknesses	 Immature Uncertain in terms of costs Needs pure H₂ 	 Needs a heavy battery to offer comparable driving ranges Recharging times 	 High GHG emissions (scope 1) Reliant on fossil resources

Vehicles with a frequent need for acceleration, long uptimes, and short refueling times are considered most attractive for FC technology.

HOW CAN PORTS EVALUATE THE SUCCESSFUL TRANSITION TOWARDS H₂ POWERED VEHICLES?

КРІ	Description
Out of Service Times/Waiting Costs	The sum of times a vehicle is fueling or not in operation, and the corresponding waiting costs
Fuelling H ₂ /H ₂ Costs	How much H ₂ is needed for operation? Represents fuel costs
Emitted CO ₂ - equivalent/CO ₂ costs	Depending on the source of H_2 and a possible carbon tax/ETS in place

These KPI's can determine whether H_2 can be considered an alternative energy carrier for a port terminal.

MODEL PARAMETERS

Focus on the usage of H_2 in terminal vehicles – How can ports use H_2 there?

Technical and operational parameters

- Tank capacity,
- Consumption/h,
- Refueling rate/h,
- Time to reach the refueling station.

Determines how often the vehicle needs to refuel, and how much time is lost in a refueling operation.

Economical parameters

- Cost of hydrogen,
- Cost of emissions,
- Waiting costs.

Determines the economic impact of operating H_2 powered vehicles based on the refueling cycle.

FOUR ALTERNATIVE FUELING STRATEGIES

Partial Subsequent fueling Full

CONCLUSIONS

as Alles I VELVES VEL

KÜHNE LOGISTICS UNIVERSITY

100

CONCLUSIONS

- This research investigates the correlation between energy consumption, terminal throughput, and overall energy expenses for Colombian container terminals.
- Energy consumption patterns within the port activity clusters were identified by analyzing's monthly data from 2017 to 2020.
- Horizontal movements are the most energy-intensive activities. Also, a significant part of the terminals' total energy consumption remains undefined.
- Recognizing and decreasing undefined energy with adequate measurement methods is essential for increasing energy efficiency measures and adapting emission reduction strategies.
- The need for complete and trustworthy data is crucial for monitoring and controlling energy consumption in container terminals.
- Analysis shows existing potential to reap the benefits for technological change (electrification, H2)

CONCLUSIONS

- There is a public interest in improving energy efficiency but no clear path to advance towards that goal in the port industry.
- There is lack of strategies or programs to measure energy consumption by source and their overall energy efficiency.
- This lack of data impacted the ability of regulators to draft and implement public policies for climate change mitigation.
- Measuring, monitoring, and sharing the results and best practices will be the key to maintaining this effort.
- A benchmarking culture must be stimulated between terminal management companies to improve individual and collective performance in GHG reduction and energy efficiency increase.

SPECIFIC CONCLUSIONS HORIZONTAL OPERATIONS

Total Costs are vastly dependent on the price of H₂. H₂ accounts for the largest portion of costs.

Source of H_2 determines both costs and potential CO_2 savings.

For the transition towards H_2 costs for CO_2 must match the impact of waiting costs to be profitable (at a competitive H_2 price)

H₂ is best applicable for smaller semi-automated terminals.

Large amount of technological uncertainty towards operating H₂ powered vehicles

FURTHER RESEARCH

- All of the insights gained by researching this topic may be combined with implementing new technologies to produce a positive feedback loop that results in more innovation and knowledge.
- Present sustainable practices as competitive so that the transition out of fossil fuels, for instance, does not depend exclusively on the goodwill of corporations.
- Fully understanding the potential economic benefits of increasing energy efficiency requires more research on public policies, port economics, and regulations.
- The relationship between the academy and private companies still has room to improve.
- A joint effort to improve key performance indicators, equipment analysis, and decision-making processes may produce yet-to-be-seen sustainability strategies for container terminals.

- Evolving this study based on realistic consumption data in different times of the day and implementing opportunity costs
- Further agent-based modelling on different cases to evaluate contextual conditions and boundary conditions
- Further evaluate the options of green hydrogen and its CO2 implications

QUESTIONS?

Luisa Spaggiari, Gordon Wilmsmeier, Lara Pomaska, Max Mühlemeyer, Johannes Meuer

Hapag-Lloyd Center for Shipping and Global Logistics (CSGL) Center for Sustainable Supply Chains and Logistics Kühne Logistics University (KLU) Hamburg | Germany

Kühne Professorial Chair in Logistics School of Management | Universidad de los Andes Bogotá | Colombia KÜHNE LOGISTICS UNIVERSITY

KÜHNE-STIFTUNG

IMSF Annual Conference 2022 Hamburg October 2022

KÜHNE LOGISTICS UNIVERSITY

LITERATURE

ALLES INEINE VIER

KÜHNE LOGISTICS UNIVERSITY

100

SOURCES

Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. *International Journal of Hydrogen Energy*, 44(29), 15072–15086. <u>https://doi.org/10.1016/j.ijhydene.2019.04.068</u>

BMWi. (2020). *Die Nationale Wasserstoffstrategie*. Bundesministerium für Wirtschaft und Energie. <u>https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/die-nationale-wasserstoffstrategie.pdf?__blob=publicationFile</u>

Cunanan, C., Tran, M.-K., Lee, Y., Kwok, S., Leung, V., & Fowler, M. (2021). A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. *Clean Technologies*, 3(2), 474-489. <u>https://doi.org/10.3390/cleantechnol3020028</u>

Germscheidt, R. L., Moreira, D. E. B., Yoshimura, R. G., Gasbarro, N. P., Datti, E., dos Santos, P. L., & Bonacin, J. A. (2021). Hydrogen Environmental Benefits Depend on the Way of Production: An Overview of the Main Processes Production and Challenges by 2050. *Advanced Energy and Sustainability Research*, 2(10), 2100093. <u>https://doi.org/10.1002/aesr.202100093</u>

H2PORTS. (n.d.-a). *Pilots - Hydrogen Refuelling Station*. H2PORTS. Retrieved April 20, 2022, from <u>https://h2ports.eu/pilots/#1560789549136-9427f977-771c</u>

H2PORTS. (n.d.-b). *Pilots - Reach Stacker*. H2PORTS. Retrieved April 20, 2022, from <u>https://h2ports.eu/pilots/#1560789545736-55d48879-d8e2</u>

H2PORTS. (n.d.-c). *Pilots - Yard Tractor*. H2PORTS. Retrieved April 20, 2022, from <u>https://h2ports.eu/pilots/#1560789545801-79c951e9-09b7</u>

Hosseini, S. E., & Butler, B. (2019). An overview of development and challenges in hydrogen powered vehicles. *International Journal of Green Energy*, 17(1), 13-37. https://doi.org/10.1080/15435075.2019.1685999

Lee, D.-Y., Elgowainy, A., & Dai, Q. (2018). Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States. *Applied Energy*, 217, 467-479. https://doi.org/10.1016/j.apenergy.2018.02.132

SOURCES

Li, J., Ramteke, A., Youn, E., Hansen, E., Kratschmar, K., Prakash, A., Stager, J., & Ku, A. Y. (2021). Liquid pump-enabled hydrogen refueling system for heavy duty fuel cell vehicles: Pump performance and J2601-compliant fills with precooling. *International Journal of Hydrogen Energy*, 46(42), 22018–22029. <u>https://doi.org/10.1016/j.ijhydene.2021.04.043</u>

Mitsui O.S.K. Lines. (2021, May 7). MOL Group and Mitsui E&S Machinery to Commence Joint Study to Introduce Hydrogen Fuel Port Cargo Handling Machineries -Introducing New Port Cargo Handling Machineries in Port of Kobe to Aim for Zero Emission-. Mitsui O.S.K. Lines. https://www.mol.co.jp/en/pr/2021/21038.html

Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. *Renewable and Sustainable Energy Reviews*, 67, 597-611. https://doi.org/10.1016/j.rser.2016.09.044

Port of Rotterdam. (n.d.). *Hydrogen in Rotterdam*. Port of Rotterdam. Retrieved April 21, 2022, from <u>https://www.portofrotterdam.com/en/port-future/energy-transition/ongoing-projects/hydrogen-rotterdam</u>

Port Technology. (2021, May 11). Port of Antwerp collaborates in hydrogen-powered HyTrucks initiative. Port Technology International; Port Technology International Team. <u>https://www.porttechnology.org/news/port-of-antwerp-collaborates-in-hydrogen-powered-hytrucks-initiative/</u>

Ramos, K. M. (2021). The Role of Hydrogen in our Energy Future. *Climate and Energy*, 37(10), 26-32. <u>https://doi.org/10.1002/gas.22230</u>

Schuh, G., Schenk, L., & Scholz, P. (2022). Use Cases for Fuel Cells in the Commercial Vehicle Sector. *MTZ Worldwide*, 83(2-3), 16-23. https://doi.org/10.1007/s38313-021-0760-x

Tarhan, C., & Çil, M. A. (2021). A study on hydrogen, the clean energy of the future: Hydrogen storage methods. *Journal of Energy Storage*, 40, 102676. <u>https://doi.org/10.1016/j.est.2021.102676</u>

SOURCES

Turner, L. (2017). Hydrogen as a fuel: Is it really viable? *ReNew: Technology for a Sustainable Future*, 139, 68-71. https://www.jstor.org/stable/pdf/90002092.pdf?refreqid=excelsior%3A498f08f85be8130f6cb8c52baf49aa15&ab_segments=0%2Fbasic_search_gs v2%2Fcontrol&origin=

World Bank. (2019). *Carbon Pricing Dashboard | Up-to-date overview of carbon pricing initiatives*. Worldbank.org. <u>https://carbonpricingdashboard.worldbank.org/map_data</u>

WPSP. (2018). *Ports of Auckland – GHG Emission Reduction Pathway – World Port Sustainability Program*. Sustainableworldports.org. <u>https://sustainableworldports.org/project/ports-of-auckland-ghg-emission-reduction-pathway/</u>

WPSP. (2019a). Port of Long Beach – C-PORT Zero Emissions Demonstration Project – World Port Sustainability Program. Sustainableworldports.org. <u>https://sustainableworldports.org/project/port-of-long-beach-c-port-zero-emissions-demonstration-project/</u>

WPSP. (2019b). Port of Los Angeles - Zero Emissions Pathway Technology Demonstrations - World Port Sustainability Program. Sustainableworldports.org. https://sustainableworldports.org/project/port-of-los-angeles-zero-emissions-pathway/