Green Port Transformation

HPC’s Approach and Insights from Projects

- Reduced Air Pollution
- Improved Working Conditions
- Renewable Energies
- Improved Profitability
Agenda

1. Introduction: HPC Hamburg Port Consulting GmbH

2. Motivation

3. Achieving a Green Port Transformation
 - Situation, Challenge and Solution
 - Approach and Insights from Previous Projects

4. Outlook
HPC Hamburg Port Consulting GmbH

Background, Goal, Focus, Clients

- Founded in 1976 as subsidiary of HHLA Hamburger Hafen und Logistik AG
- Full-service provider focussing on ports, logistics and intermodal facilities, ranging from smaller break-bulk facilities to fully-automated container terminals
- HPC Hamburg Port Consulting GmbH is the leading management consultant in the worldwide port and transport sector
 - Around 100 experts, annual turnover in 2016: approx. € 13m
 - Since 1976 port and transport-related projects in more than 100 countries, both in the private and public sector
- Support from the first project idea, via planning and implementing of project up to running operation
Motivation

Need for a More Sustainable Energy Use in Ports and Terminals

Drivers towards achieving more energy sustainable port operation

High energy consumption in ports and terminals

Yearly energy consumption of HHLA container terminals

△ Energy consumption of > 40,000 private persons
Achieving a Green Port Transformation
Situation, Challenge and Solution

Situation: ports and terminals need to improve their environmental impact but also their profitability

Challenge: how to identify not only feasible but also the most (cost-) efficient energy sustainability measures?

Solution: approach to pursue a cost-effective “green port transformation”
Approach to Pursue a Green Port Transformation

Step 1: Pre-Evaluation of Measures

- Identification of feasible measures based on terminal inspection
- Pre-selection of measures using an energy sustainability catalogue

Energy sustainability catalogue

- > 200 measures for all kind of terminals and port authorities
 - Type of measures: operation, technical and behaviour
 - Categorization according to energy consumer clusters
 - Pre-evaluation of measures according to three main criteria

Energy sustainability measures (port authority)

Energy sustainability catalogue (extract for terminal type: container terminal)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Energy consumer</th>
<th>Layer</th>
<th>Measure</th>
<th>Evaluation</th>
<th>Efforts for implementation</th>
<th>Total score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo handling equipment</td>
<td>Ship to shore cranes</td>
<td>LED floodlights and walkway lights</td>
<td>10 10 8</td>
<td>9.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo handling equipment</td>
<td>Yard transport equipment</td>
<td>Electrification of power train</td>
<td>10 10 5</td>
<td>8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo handling equipment</td>
<td>Yard transport equipment</td>
<td>Eco-driving</td>
<td>6 6 10</td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo handling equipment</td>
<td>Yard loading / unloading equipment</td>
<td>Unsynchronised Moves</td>
<td>10 10 2</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reefer</td>
<td>Energy management</td>
<td></td>
<td>2 2 6</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 1: Pre-Evaluation of Measures

Exemplary Measures for Container Terminals

- Exemplary resource measure: electrification of yard transport equipment
 - Energy / emission saving potential: battery-powered AGVs require up to 30% less energy compared to conventional designs
 - Efforts for implementation: operators should expect to make major modifications at the terminal level / B-AGVs are still much more expensive

- Exemplary operation measure: unsynchronized moves for RMGs
 - Energy / emission saving potential: even out energy consumption of RMGs can result in savings of more than 30%
 - Efforts for implementation: movements or operations of any cranes must not be affected

- Exemplary behaviour measure: eco-driving lessons (e.g. for straddle carrier)
 - Energy / emission saving potential: average fuel savings of 5–10% per operating hour can be achieved at unchanged terminal performance levels
 - Efforts for implementation: can be provided in the form of on-road training or with simulator
Step 2: Detailed Analysis

Simulation Model

Main goal: achieve a highly accurate, specific assessment of energy effects and operational implications of energy sustainability measures

Components of simulation model

1. Logistics model: to model all terminal operations considering
 - Terminal-specific layout
 - Equipment
 - Processes
 - Cargo flows

2. Energy tracker: to capture the resulting energy consumption and emissions of a terminal on basis of:
 - Incremental equipment movements considering all sub-movements (e.g. accelerating) and energy-relevant criteria (e.g. loaded weight or equipment characteristics)
 - Baseload (e.g. office)
 - Own energy generation and energy storage
Simulation Model

Insights from Previous Projects

- Project goal: analysis of energy consumption pattern of a container terminal and identification of most effective energy sustainability measures

 ➢ Main result 1: simulated terminal load profile

 ![Load profile of container terminal (one week period)](image)

 ▪ Largest energy consumers: AGVs and yard cranes
 ▪ Minor energy consumer: rail cranes and trucks
 ▪ Occurrence of several high peak loads
Simulation Model

Insights from Previous Projects

- Main result 2: evaluation of energy sustainability measures
 - Detailed investigation of measure “LED floodlights and walkway lights on STS”

- Total energy savings: > 20%
- Reduction of auxiliary energy consumption: > 50%
- Additional benefits: reduction of unscheduled equipment downtime / reduced light pollution, light spill and glare / improved employee safety / possibility of dimming and programing
Step 2: Detailed Analysis
Profitability Analysis: Procedure and Project Insights (1/2)

1. Cash flow analysis to quantify the economic consequences of energy sustainability measures

Example from project: cash flow analysis for electric and conventional AGV fleets
Step 2: Detailed Analysis
Profitability Analysis: Procedure and Project Insights (2/2)

2. Optimization models: for utilizing flexible load-shifting potential in ports or terminals

Example from project: optimization of charging costs of battery-electric AGVs

Battery charging and idle times

Optimization of charging times
Outlook
Achieving a Future-oriented, Environmentally Friendly Transportation Sector

- The need for a more sustainable energy use is especially relevant for ports, which are crucial hubs in the global trading system
 - The main challenges of adopting measures in this field is the limited knowledge about potential measures and their effectiveness, as well as conflicting preferences between different actors in the port
- Detailed information about the effectiveness of energy sustainability measures prerequisite for its application

- Port and vessel operation need to be analysed together in future in order to actually achieve a “green port transformation

Potential measures

Pre-evaluation Simulation analysis Life cycle assessment Profitability analysis

Most promising measure
Thank you for Your Attention

For further information, please contact

HPC Hamburg Port Consulting GmbH

Dr. Johannes Schmidt
Container Terminal Altenwerder
Am Ballinkai 1
21129 Hamburg
Germany

Telefon: +49 40 74008-127
Fax: +49 40 74008-133
Mail: j.schmidt@hpc-hamburg.de
Backup
Background

Energy consumption in ports

1. Different role of port authority and terminals
 - Since port authorities do not carry out port operations, their share on a port’s total energy consumption is relatively low
 - Energy sustainability programs initiated by the port authority are usually politically motivated; however, only few options exist to directly initiate energy sustainability measures for port authorities

2. Different terminal types in ports
 - All terminal types differ with regard to the cargo handling equipment as well as storage structure
 - The energy consumption pattern of each terminal type differ significantly
 - There are different measures to be applied on each terminal type
 - Usually, the main energy consumers in terminals is the cargo handling equipment

3. Energy consumption of vessels in ports
 - Emissions from shipping at berth are approx. ten times greater than those from port’s own operations
 - Especially port authorities can have an influence on reducing such emissions

Energy consumption by port users

Source: Luskien Center, 2013.

CO₂ emission sources at Felixstowe port

Source: Gibbs et al., 2014.
Motivation

Drivers towards achieving more energy sustainable port operation

- Threat of climate change
- Increase of cost-effectiveness
- Improvement of “green” image
- Port stakeholder requirements
Motivation

Yearly energy consumption of HHLA container terminals

- Electricity
- Petrol
- Heating gas
- Heating oil
- District heat
- Total

△ Energy consumption of > 40,000 private persons (in Germany)