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* The environmental consequences of increased maritime transport due to globalization
have become important due to its impact on local pollution and climate change.

* This environmental impact is (mainly) caused by the exhaust gas from the ship's
combustion engines.

* The first regulation of exhaust gas in the late 1990-ties , was not strict.

* The global 2020 cap on maximum 0.5 % sulphur in the exhaust gas, combined with the
required NOx and CO2 reductions for new-built vessels, is an economical and technical
challenge for the shipping industry.

* Alternative fuels such as LNG, LPG, Methanol or Hydrogen is one tempting option for
meeting these new requirements.
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World Energy Consumption 1971 — 2015 source: www.iea.org
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Development of shipping emissions up to 2050 for 16
different scenarios developed by the Third IMO GHG study
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Life-Cycle Assessment (LCA)

 Studies of alternative marine fuels have used both simplified and more advanced life-
cycle assessment (LCA) methodology

* LCA enables the evaluation of a product environmental performance throughout its
whole life cycle, i.e. raw materials extraction, production, usage and final disposal.

* LCA presents a holistic overview and it enables us to identify the most relevant
environmental impacts.

e LCA helps to avoid potential shifting of environmental impacts between the different
phases of a product’s life cycle, or from one environmental impact to another
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The fuel and abatement options considered in this study are

e Heavy fuel oil (HFO) with a maximum sulphur content up to 3.5%.

Desulphurised HFO, i.e. LSHFO<0.5%S and 0.1 %S

HFO in combination with an exhaust gas scrubber to comply with sulphur caps

Marine gas oil (MGO), which is a diesel with a maximum sulphur content of 0.1%.

Biodiesel or Biogas produced from crops or waste materials.

Liquid Natural Gas (LNG) in combination with diesel dual-fuel engines.

Synthetic diesel (GTL), Methanol and Hydrogen all produced from natural gas.
Hydrogen produced from renewable sources such as wind or hydropower.

Batteries charged from the land based grid.
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The human contribution to climate change & mitigation is net effect Sf'
of Greenhouses gases, Ozone, Water vapour, Albedo and Aerosols
which means that focus has to be on more than CO, only reductions

Norges forskningsrad
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http://www.ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-human-and.html
https://en.wikipedia.org/wiki/Global_warming#CITEREFIPCC_AR4_WG12007
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Modelling challenges Tank to wake emissions (TTW)
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Global fleet - Modelling Fuel consumption and emissions as a function of engine ==
specifics and engine (source: Ringvold et al., 2018)
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Tank to Wake (TTW) emissions for fossil fuel used in shipping
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The impact of the emissions depends on where a vessel operates
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WELL TO WAKE EMISSIONS sfi e

* The well to wake (WTW) emissions of a vessel includes in addition to combustion

(TTW) emissions the extraction or production, processing and the distribution of the
fuel.

* While biofuels, hydrogen or electricity has no TTW emissions, the full amount of

carbon oxide emitted during their production is included in their well to tank
emissions.

* In addition to CO, emissions, two other greenhouse gases are generally included in
the WTT emissions, i.e. methane CH, and nitrous oxide N,O, which are converted
into CO, equivalents.
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Macro Figures

e Total Oil 4 000 million tons
e Total Residual 500 — 750 million tons

* Shipping consummes 300 million tons

* 75 % of consumption is residual HFO

* 23 % of consumption is distilate (diesel)
*2 % is LNG and other
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Number of vessels and bunker consumption as a function of
installed power source: Lindstad and Eskeland 2016
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Fuel prices per ton of oil equivalents (TOE) from

2006 to 2016 source: Bunker World: US EIA: BP 2017: Lindstad and Eskeland 2016
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Cost for Fuel and Abatement all tons are Ton of oil equivalents

50 USD

Costper Cavipment Equipment Equipment Equipment

Price Increase Basic and and and and
: per 1000 kW . L L L :
Fuel and Abatement Option barrel of compared to  Capex ctalled installation installation installation installation
. HFO cost 2.5MW SMW 10MW 20MW
crude oil power
vessel vessel vessel vessel
USD/ton  USD/ton MUSD MUSD MUSD MUSD MUSD MUSD
HFO 300 - - -
LSHFO <0.5% S 375 50 - 200 - -
Diesel 500 100 - 300 - -
HFO - Hybrid Scrubber 300 - 2.25 0.07 24 2.6 3.0 3.7
Gas on newbuilt LNG/LPG vessels - 2.00 0.10 2.3 2.5 3.0 4.0
Methanol on newbuilt vessel 2.00 0.20 2.5 3.0 4.0 6.0
LPG - newbuilt vessel 2.00 0.30 2.8 3.5 5.0 8.0
LNG - newbuilt vessel - 2.00 0.40 3.0 4.0 6.0 10.0
Hydrogen - newbuilt vessel - 4.00 0.80 6.0 8.0 12.0 20.0




Abatement cost per ton of fuels with retrofitted scrubbers

Installed Design Speed Days at Fuel per  Fuel per Abatetment Abatetment Towl
: No.of DWT sea  vessel  vessel 2012 fuel

Ship type Power speed atSea .. cost per ton costperton , ...
vessels  (ton) (W)  (knots) 2012 sailing 2012  upper high end low end (million

2012  (ton) limit (ton) ton)
General Cargo 7' dwt 2900 7300 3300 136 10.1 166 1800 2900 331 205 5.2
Tank 15' dwt 1050 15300 5100 141 117 181 3700 4 800 169 130 3.9
Dry Bulk Panamax 2300 82000 10900 153 11.9 191 6200 9 200 117 79 14.3
Tank 110" dwt 900 109300 13800 153 116 186 9000 14100 86 55 8.1
Tank 160" dwt 500 162300 18800 16.0 11.7 206 10900 18400 79 47 55
Dry Bulk 270" dwt 300 271400 22200 15.7 12.2 202 11400 17000 80 54 3.4
Container 2'-5' TEU 1700 46800 30500 23.3 155 224 14600 29800 72 35 24.8
Tank 310" dwt 600 313400 27700 16.0 125 233 19100 28200 53 36 115
Container 5'-12' TEU 900 87300 59500 25.3 16.3 250 25600 55700 60 28 23.0
Container > 12' TEU 100 177000 83000 25.0 14.8 242 30200 77800 64 25 3.0
LNG 120" dwt 50 121300 37400 19.3 16.9 277 34100 40100 34 29 1.7
Cruise > 10' GT 250 7300 42600 21.3 155 261 42000 71600 30 18 10.5
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Scrubber abatement cost per vessel as a function of en lﬁe
size and annual fuel consumption
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Abatement cost per ton for tankers with scrubbers retrofitted

versus the fuel options -> increased consumption reduces the cost per
ton for the scrubber option
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Cost Minimizing
speeds 110" dwt
Aframax tanker

Cost in USD per ton transported

Cost in USD per ton transported
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Main Conclusions

* HFO & Scrubber encourage higher speeds, diesel reduces the speed
* Increased Energy usage 5 —10 % ( at refinery or higher speeds with scrubbers)

* Scrubber is most cost efficient for large consumers and most competitive at high
fuel prices for nearly all vessels

* Versus retrofitting, HFO<0.5% S might be cost competitive for vessels with fuel
consumption up to 10 000 tons

* Diesel is only an alternative for the smallest consumers of HFO today
* To be an competitive option, the LNG price has to be lower than the HFO price

* |If the Global temperature continues to peak (Increase) the regulation might be
reversed, i.e. continued use of HFO at the high seas



State-of-the-art technologies, measures, and potential for i
reducing GHG emissions from shipping — A review
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