() SINTEF

Cleaner Fuels in shipping or are Climate and Cost better off with HFO & Scrubbers 1

Dr. Elizabeth Lindstad SINTEF Ocean AS (MARINTEK)

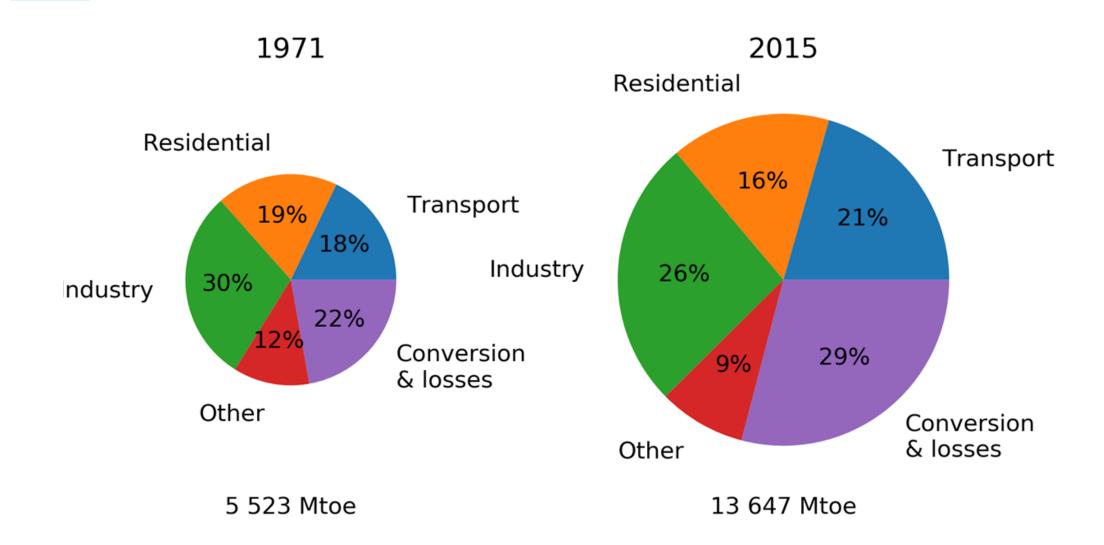
S = Centre for Research-based Innovation

www.smartmaritime.no

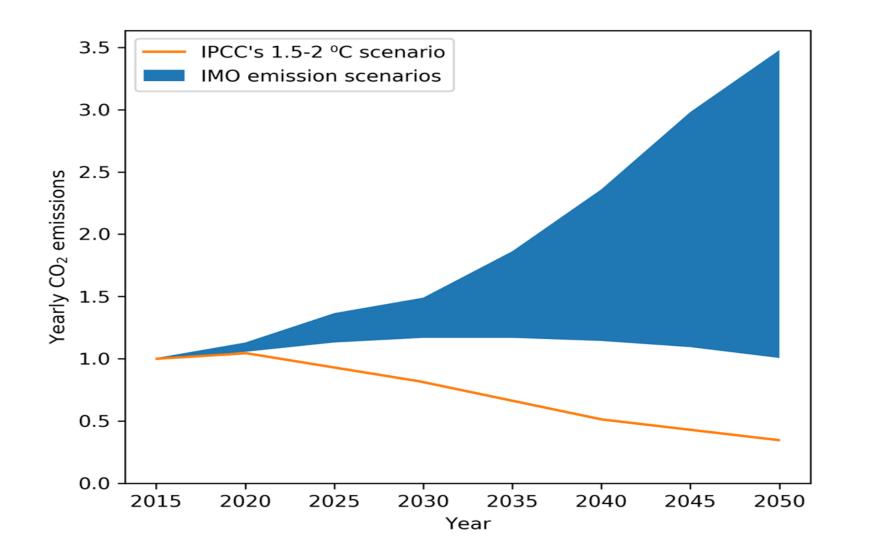
The Research Council of Norway

THIS STUDY HAS BEEN FINANCED BY SFI SMART MARITIME

NORWEGIAN CENTRE FOR IMPROVED ENERGY EFFICIENCY AND REDUCED HARMFUL EMISSIONS FROM THE MARITIME SECTOR.


Background

- Senter for forskningsdrever innovasjon
- The environmental consequences of increased maritime transport due to globalization have become important due to its impact on local pollution and climate change.
- This environmental impact is (mainly) caused by the exhaust gas from the ship's combustion engines.
- The first regulation of exhaust gas in the late 1990-ties , was not strict.
- The global 2020 cap on maximum 0.5 % sulphur in the exhaust gas, combined with the required NOx and CO2 reductions for new-built vessels, is an economical and technical challenge for the shipping industry.
- Alternative fuels such as LNG, LPG, Methanol or Hydrogen is one tempting option for meeting these new requirements.



World Energy Consumption 1971 – 2015 Source: www.iea.org

Development of shipping emissions up to 2050 for 16 different scenarios developed by the Third IMO GHG study

Source: Smith et al. (2014) and IPCC (2013)

Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

Sulphur abatement globally in maritime shipping

H. Elizabeth Lindstad^{a,*}, Carl Fredrik Rehn^b, Gunnar S. Eskeland^c

Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review

Evert A. Bouman^{a,*}, Elizabeth Lindstad^b, Agathe I. Rialland^b, Anders H. Strømman

	Contents lists available at ScienceDirect
275 C	Transport Policy
ELSEVIER	journal homepage: www.elsevier.com/locate/tranpol

Environmental regulations in shipping: Policies leaning towards globalization of scrubbers deserve scrutiny

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation

	Contents lists available at ScienceDirect	ENERGY POLICY
	Energy Policy	
ELSEVIER	journal homepage: www.elsevier.com/locate/enpol	

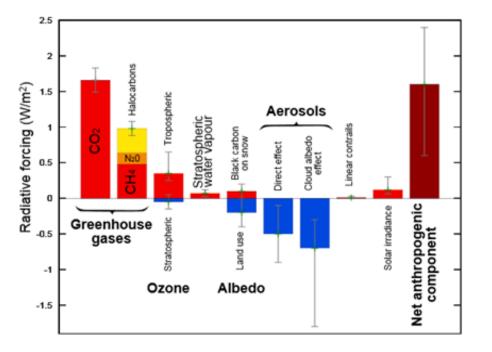
Maritime shipping and emissions: A three-layered, damage-based approach

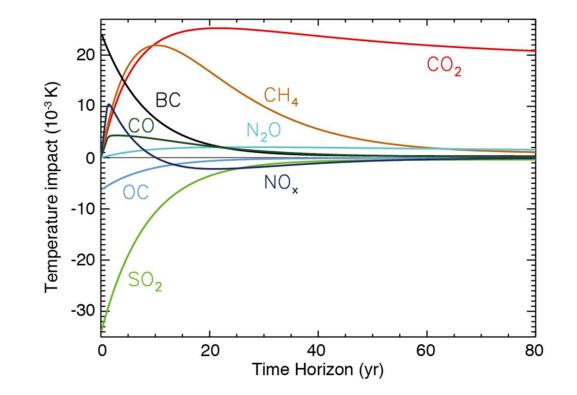
Reductions in greenhouse gas emissions and cost by shipping at lower speeds

Life-Cycle Assessment (LCA)

- Studies of alternative marine fuels have used both simplified and more advanced lifecycle assessment (LCA) methodology
- LCA enables the evaluation of a product environmental performance throughout its whole life cycle, i.e. raw materials extraction, production, usage and final disposal.
- LCA presents a holistic overview and it enables us to identify the most relevant environmental impacts.
- LCA helps to avoid potential shifting of environmental impacts between the different phases of a product's life cycle, or from one environmental impact to another

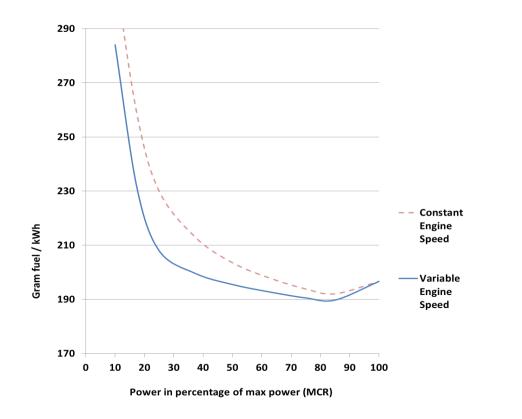
The fuel and abatement options considered in this study are

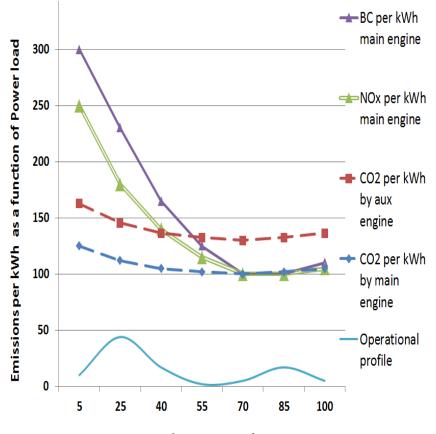

- Heavy fuel oil (HFO) with a maximum sulphur content up to 3.5%.
- Desulphurised HFO, i.e. LSHFO<0.5%S and 0.1 %S
- HFO in combination with an exhaust gas scrubber to comply with sulphur caps
- Marine gas oil (MGO), which is a diesel with a maximum sulphur content of 0.1%.
- Biodiesel or Biogas produced from crops or waste materials.
- Liquid Natural Gas (LNG) in combination with diesel dual-fuel engines.
- Synthetic diesel (GTL), Methanol and Hydrogen all produced from natural gas. Hydrogen produced from renewable sources such as wind or hydropower.
- Batteries charged from the land based grid.



The human contribution to climate change & mitigation is net effect of Greenhouses gases, Ozone, Water vapour, Albedo and Aerosols which means that focus has to be on more than CO₂ only reductions

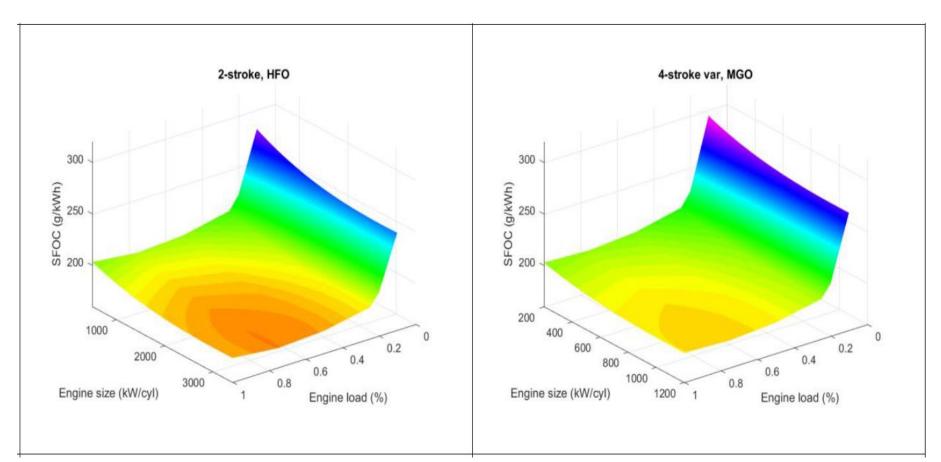
Source: Leland McInnes based on IPCC <u>Natural Drivers of</u> <u>Climate Change</u>, Figure SPM.2, in <u>IPCC AR4 WG1 2007</u>.



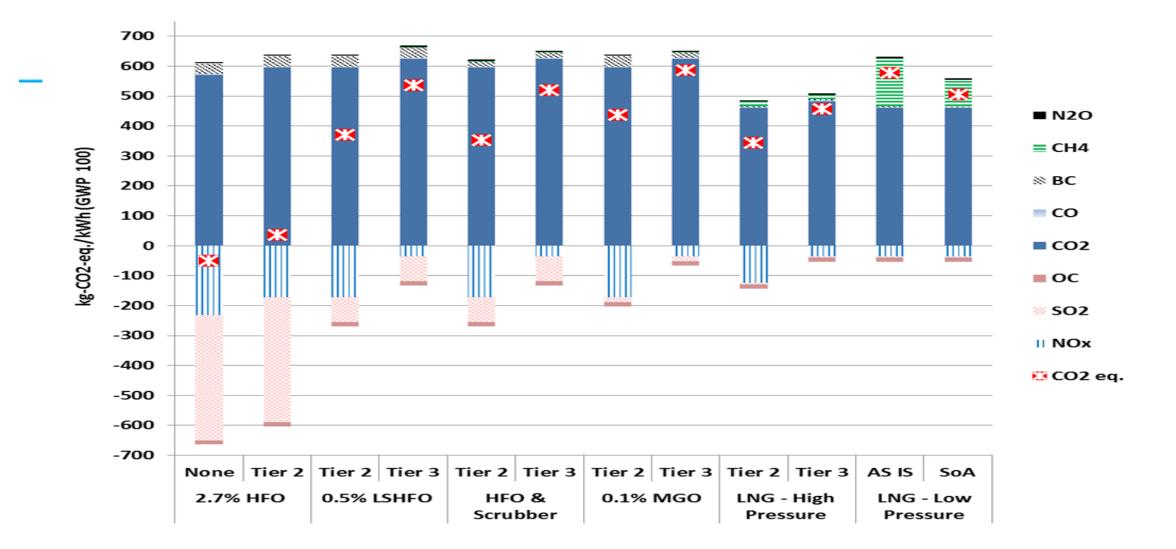


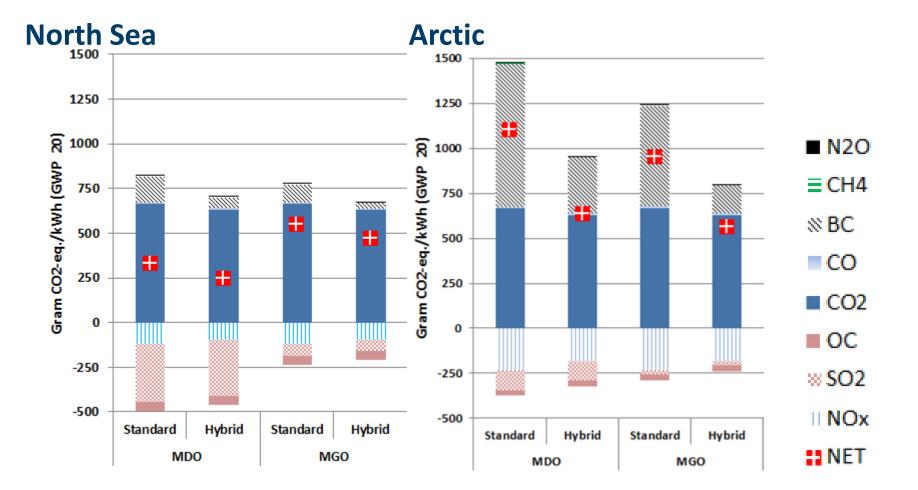
Modelling challenges Tank to wake emissions (TTW)

SMART MARITIME



Power in percentage of MCR


Global fleet - Modelling Fuel consumption and emissions as a function of engine Specifics and engine (source: Ringvold et al., 2018)

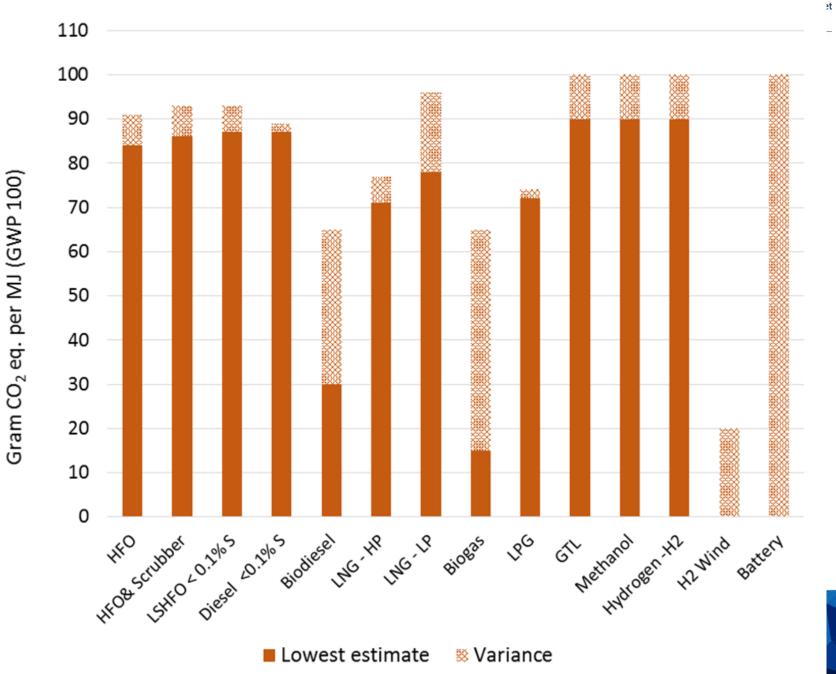


Tank to Wake (TTW) emissions for fossil fuel used in shipping

The impact of the emissions depends on where a vessel operates

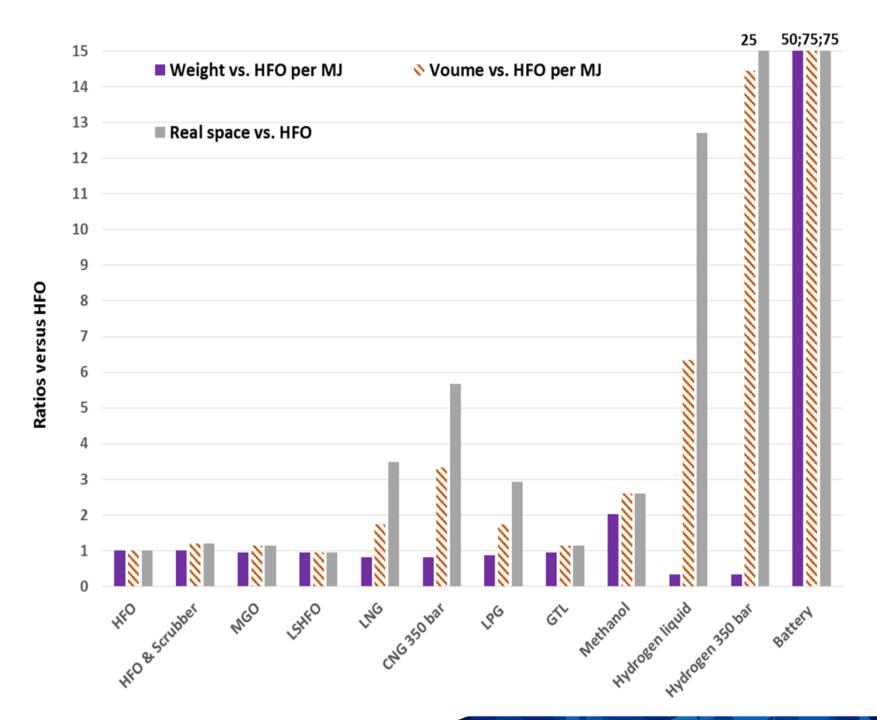
Source: Lindstad, H., E., Sandaas, I., 2016 *Emission and Fuel Reduction for Offshore Support Vessels through Hybrid Technology*. Journal of Ship Production and Design, Vol. 32, No. 4, Nov 2016, pp. 195–205

WELL TO WAKE EMISSIONS


Senter for forskningsdreve innovasjon

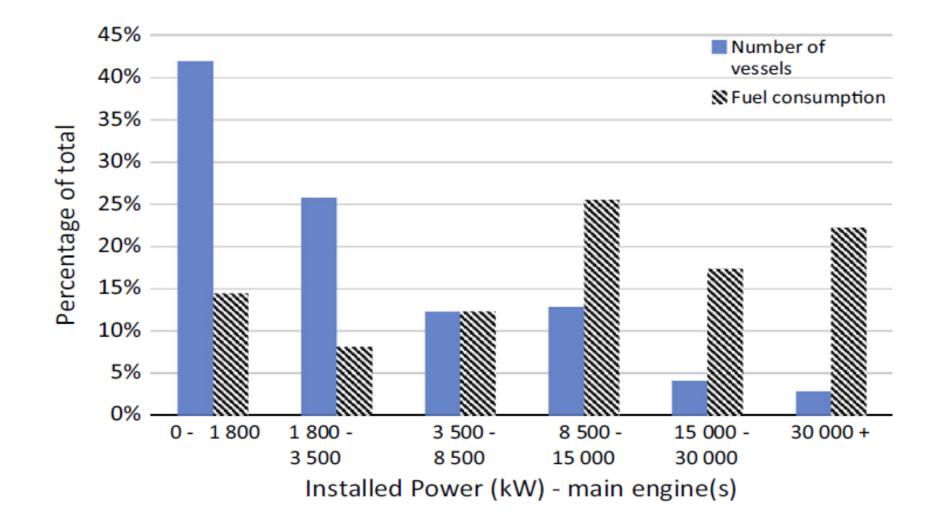
- The well to wake (WTW) emissions of a vessel includes in addition to combustion (TTW) emissions the extraction or production, processing and the distribution of the fuel.
- While biofuels, hydrogen or electricity has no TTW emissions, the full amount of carbon oxide emitted during their production is included in their well to tank emissions.
- In addition to CO₂ emissions, two other greenhouse gases are generally included in the WTT emissions, i.e. methane CH₄ and nitrous oxide N₂O, which are converted into CO₂ equivalents.

Well to Wake (WTW) emissions for alternative versus traditional fuels in shipping

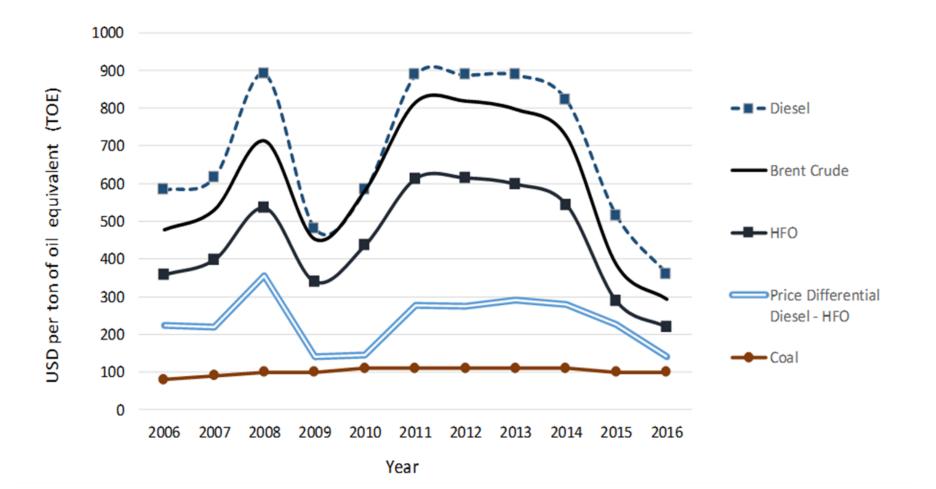


Space and weight requirements

for alternative fuels versus traditional fuels

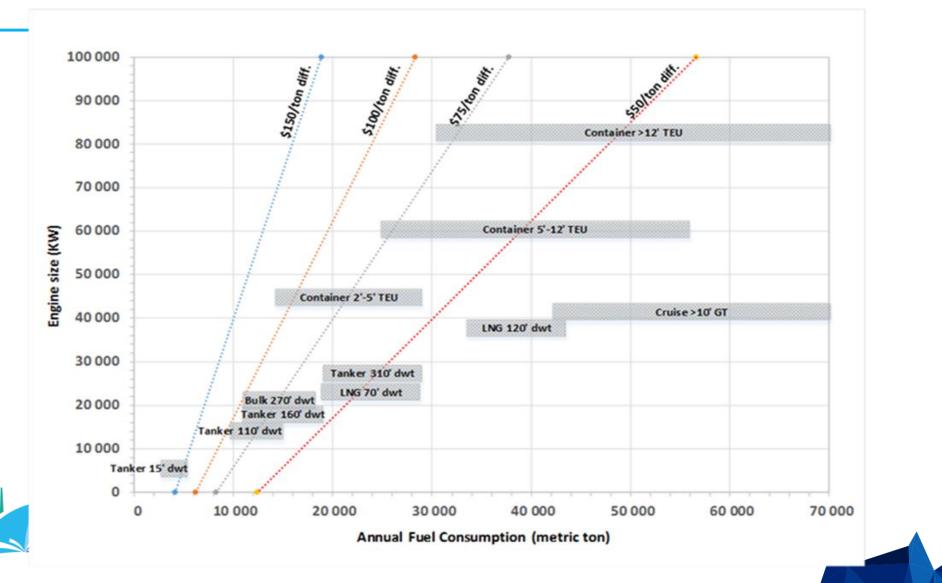

Macro Figures

- Total Oil 4 000 million tons
 - Total Residual 500 750 million tons
- Shipping consummes 300 million tons
 - 75 % of consumption is residual HFO
 - 23 % of consumption is distilate (diesel)
 - 2 % is LNG and other

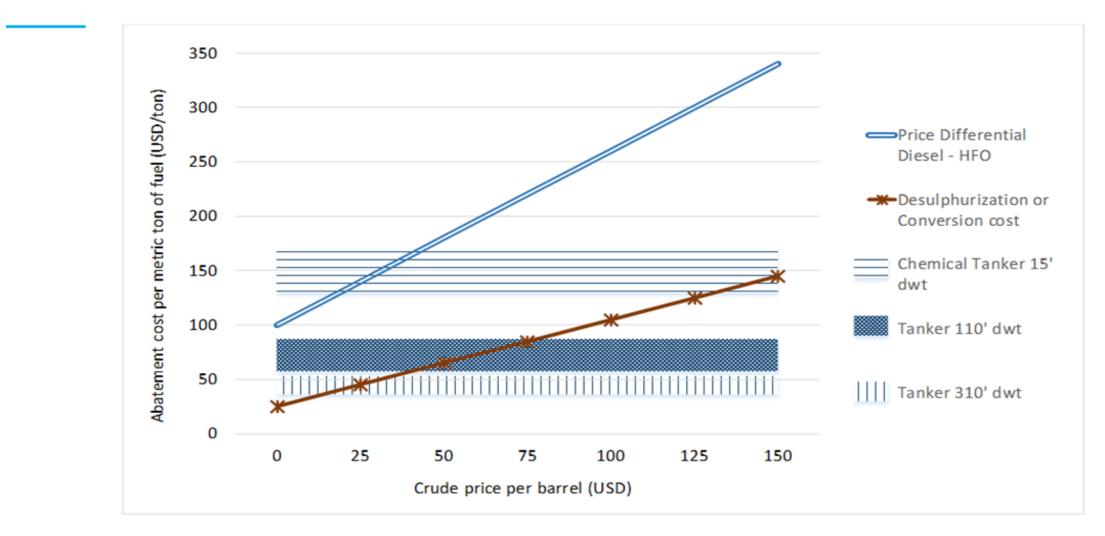


Number of vessels and bunker consumption as a function of installed power source: Lindstad and Eskeland 2016

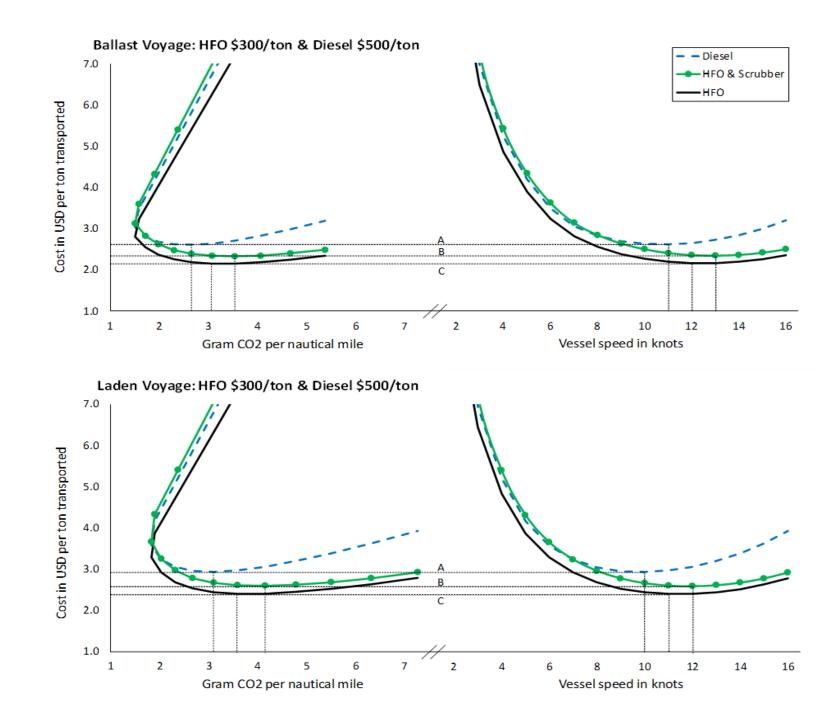
Fuel prices per ton of oil equivalents (TOE) from 2006 to 2016 Source: Bunker World; US EIA; BP 2017; Lindstad and Eskeland 2016


Cost for Fuel and Abatement all tons are Ton of oil equivalents

Fuel and Abatement Option	50 USD per barrel of crude oil	Price Increase compared to HFO	Basic Capex cost	Cost per 1000 kW installed power	Equipment and installation 2.5MW vessel	and	Equipment and installation 10MW vessel	and
	USD/ton	USD/ton	MUSD	MUSD	MUSD	MUSD	MUSD	MUSD
HFO	300	-	-	-				
LSHFO < 0.5% S	375	50 - 200	-	-				
Diesel	500	100 - 300	-	-				
HFO - Hybrid Scrubber	300	-	2.25	0.07	2.4	2.6	3.0	3.7
Gas on newbuilt LNG/LPG vessels		-	2.00	0.10	2.3	2.5	3.0	4.0
Methanol on newbuilt vessel			2.00	0.20	2.5	3.0	4.0	6.0
LPG - newbuilt vessel			2.00	0.30	2.8	3.5	5.0	8.0
LNG - newbuilt vessel		-	2.00	0.40	3.0	4.0	6.0	10.0
Hydrogen - newbuilt vessel		-	4.00	0.80	6.0	8.0	12.0	20.0

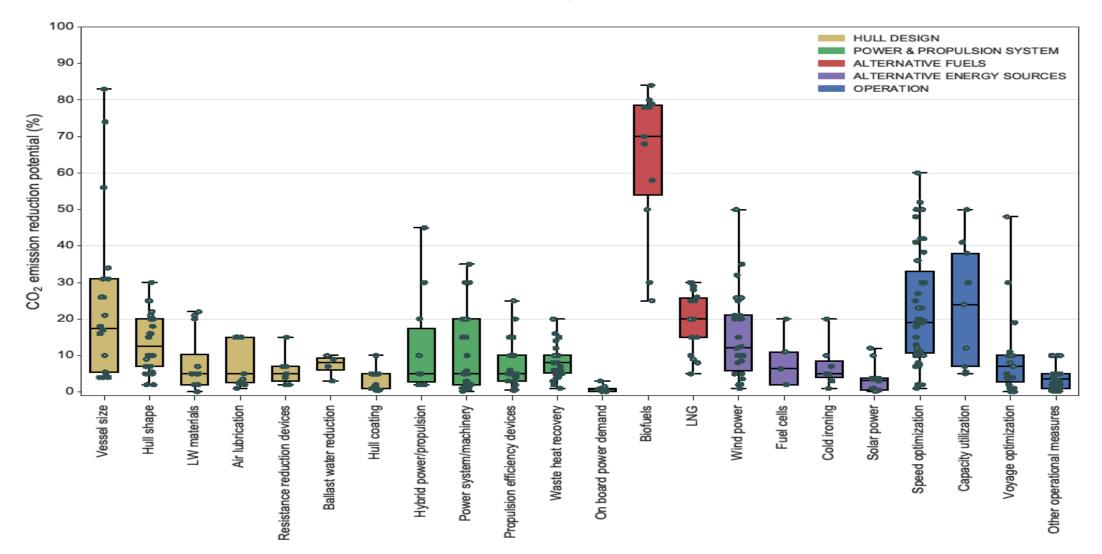

Abatement cost per ton of fuels with retrofitted scrubbers

Ship type	No. of vessels	DWT (ton)	Installed Power (kW)	-	at Sea	Days at sea sailing 2012	Fuel per vessel 2012 (ton)	Fuel per vessel upper limit (ton)	Abatetment cost per ton high end	Abatetment cost per ton low end	Total 2012 fuel (million ton)
General Cargo 7' dwt	2 900	7 300	3 300	13.6	10.1	166	1 800	2 900	331	205	5.2
Tank 15' dwt	1 050	15 300	5 100	14.1	11.7	181	3 700	4 800	169	130	3.9
Dry Bulk Panamax	2 300	82 000	10 900	15.3	11.9	191	6 200	9 200	117	79	14.3
Tank 110' dwt	900	109 300	13 800	15.3	11.6	186	9 000	14 100	86	55	8.1
Tank 160' dwt	500	162 300	18 800	16.0	11.7	206	10 900	18 400	79	47	5.5
Dry Bulk 270' dwt	300	271 400	22 200	15.7	12.2	202	11 400	17 000	80	54	3.4
Container 2'-5' TEU	1 700	46 800	30 500	23.3	15.5	224	14 600	29 800	72	35	24.8
Tank 310' dwt	600	313 400	27 700	16.0	12.5	233	19 100	28 200	53	36	11.5
Container 5'-12' TEU	900	87 300	59 500	25.3	16.3	250	25 600	55 700	60	28	23.0
Container > 12' TEU	100	177 000	83 000	25.0	14.8	242	30 200	77 800	64	25	3.0
LNG 120' dwt	50	121 300	37 400	19.3	16.9	277	34 100	40 100	34	29	1.7
Cruise > 10' GT	250	7 300	42 600	21.3	15.5	261	42 000	71 600	30	18	10.5


Scrubber abatement cost per vessel as a function of engine movasion size and annual fuel consumption

Abatement cost per ton for tankers with scrubbers retrofitted versus the fuel options -> increased consumption reduces the cost per ton for the scrubber option

Cost Minimizing speeds 110' dwt Aframax tanker



Main Conclusions

- HFO & Scrubber encourage higher speeds, diesel reduces the speed
- Increased Energy usage 5 10 % (at refinery or higher speeds with scrubbers)
- Scrubber is most cost efficient for large consumers and most competitive at high fuel prices for nearly all vessels
- Versus retrofitting, HFO<0.5% S might be cost competitive for vessels with fuel consumption up to 10 000 tons
- Diesel is only an alternative for the smallest consumers of HFO today
- To be an competitive option, the LNG price has to be lower than the HFO price
- If the Global temperature continues to peak (Increase) the regulation might be reversed, i.e. continued use of HFO at the high seas

State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review

Evert A. Bouman^{a,*}, Elizabeth Lindstad^b, Agathe I. Rialland^b, Anders H. Strømman^a

Main References 2016 & 2017

Lindstad Elizabeth, Rehn C., F., Eskeland, G., S. 2017 *Sulphur Abatement Globally in Maritime Shipping* Accepted for publication in Transportation Research Part D

Bouman, E., A., Lindstad, E., Rialland, A. I, Strømman, A., H., 2017 *State-of-the-Art technologies, measures, and potential for reducing GHG emissions from shipping - A Review.* Transportation Research Part D 52 (2017) 408 – 421

Lindstad, H., E., Eskeland. G., S., Rialland, A., 2017. *Batteries in Offshore Support vessels - Pollution, climate impact and economics.* Transportation Research Part D 50 (2017) 409–417

Lindstad, H., E., Sandaas, I., 2016 *Emission and Fuel Reduction for Offshore Support Vessels through Hybrid Technology*. Journal of Ship Production and Design, Vol. 32, No. 4, Nov 2016, page 195-205.

Lindstad, H. E., Bright, R., M., Strømman, A.H., 2016 Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation. Transport Policy 45 (2016), page 24-30.

Lindstad, H., E., Eskeland. G., S., 2016. *Policies leaning towards globalization of scrubbers deserve scrutiny* Transportation Research Part D 47 (2016), page 67-76

Lindstad, H. E. Asbjørnslett, B. E., Strømman, A., H., 2016, *Opportunities for increased profit and reduced cost and emissions by service differentiation within container liner shipping*. Maritime Policy & Management, Volume 43, Issue 3, Pages 280–294 Lindstad, H., E., Mørch, H., J., Sandaas, I., (2016) *Improving Cost and Fuel efficiency of short sea Ro-Ro vessels through more Slender Designs – a feasibility study. Society of Naval Architects and Marine Engineers (SNAME) Transactions 123, page 303 – 316,* ISSN 0081 1661

Lindstad, Elizabeth. 2017. Cost Factors – Analysis of alternative Sulhpur abatetment options in maritime shipping from 2020. Bunkerspot page 62 – 64. Volume 14 Number 3 June/July 2017

Lindstad, Elizabeth. 2017. *Shipping needs 85% GHG cut by 2050 if seen as a nation*. TradeWinds, Page 32. 19.May 2017

Lindstad, H. E. 2016. *How the Panama Canal expansion is affecting global ship design and energy efficency* MT- Marine Technology, page 42 – 46 . Volume 53, Issue 4, October 2016

Lindstad, H. E. 2016. Shorter shipping routes through the Arctic are not necessarily more climate friendly. USApp – American Politics and Policy Blog (24 Aug 2016)

Lindstad, H. E. 2016. *Bigger picture suggest effects of IMO emission efforts are counter productive*. TradeWinds Page 10, 5.August 2016,

Lindstad, H., E., Eskeland, G., S., Sandaas, I., Steen, S. (2016) *Revitalization of short* sea shipping through slender, simplified and standardized designs. Conference proceedings SNAME 2016, 1-5 November. Seattle, USA

Bouman, E., A., Lindstad, H., E., Strømman, A., H., *Life-cycle approaches for bottom-up assessment of environmental impacts of shipping.* Conference proceedings SNAME 2016, 1-5 November. Seattle, USA

THANK YOU !

1

Dr. Elizabeth Lindstad

Lindstad@sintef.no