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Introduction

The purpose of this paper is to present a model of the number of oil spills recorded in the ITOPF database, with a view to determining whether or not the various changes in the regulations governing the operation of oil tankers, combined carriers and barges have impacted on the reported numbers of spills. In a paper on the ITOPF website, Huijer wrote that

“It is difficult to identify any one factor which contributes to the decline in overall volume and frequency of spills, rather it is considered to be the result of a range of initiatives taken by governments and the shipping industry.” (Hujier, 2005 p1.)

Whilst this may be true, it may be possible to at least determine whether certain changes in the nature of the tanker market can be shown to have statistically significant effects, and this is the focus of this paper. Reviewing the salient literature shows that there are a number of factors that could be potential explanatory variables from a time series perspective, and that Hujier’s comment is misplaced. The estimated model is then used to measure the number of spills that would have occurred had  the introduction of double hull technology (one of the initiatives),  not been made mandatory.
Literature Review 
This paper focuses specifically on studies examining possible determinants of oil spill numbers themselves, rather than the extensive literature on the economics of pollution control and on modelling accidents.

Sarin and Scherer (1976) developed a theoretical model to derive formulae for the determinants of oil spill size. They showed that the optimal size of ship involved in a spill was negatively related to an index of the value of environmental damage. For a given value of the index, their results suggested that optimal size should increase if the ratio of non-collision caused spills to collision caused spills decreases. (Sarin and Scherer, 1976, p.234). Note that in both cases the size was determined in terms of spill probability and damage value. This implies that there may well be a link between average size of vessel and spill numbers, but the link could be either positive or negative in empirical terms, depending on which of these factors was the stronger. Homan and Steiner (2008) quote the finding by Meade et al (1983) that smaller tankers exhibit higher accident rates than larger tankers, but the greater frequency of incidents did not translate necessarily into higher oil spill rates.

Talley and Anderson (1995, 1996) presented and estimated models of individual oil spill incidents for the period 1983-1989. Their 1995 paper examined all vessel (tankers and barges) spills, the 1996 study considered tankers only. In both papers, they develop a reduced form estimating equation, modelling the spill size as either zero (no spill), or positive, if the Spill Propensity Index (SPI) takes a positive value. Thus, for every accident modelled, the dependent variable is either zero (no spill), or the expected value derived from the SPI. 

Talley and Anderson (1995) present a model in which the SPI is a function of vessel size, vessel damage severity, spill prevention effort, and spill control investment effort). They argue that the relationship between vessel size and spills is a priori unknown, echoing Sarin and Scherer’s arguments. Vessel damage severity is itself modelled as a function of accident type, vessel operating condition, vessel characteristics and damage prevention effort. The latter is assumed to be determined by the extent of state safety regulation, the enforcement of such regulation, vessel size and vessel age, and the price of shipbuilding repair. The price of shipbuilding repair is argued to have two, opposite effects:- namely, the higher the price, the greater the incentive to avoid incidents, while on the other the higher price may inhibit work being carried out that may prevent spills.

Turning to spill prevention effort, Talley and Anderson model this as a function of the extent if regulation enforcement, the extent of environmental regulation, vessel size and age, and the real price of oil. The latter is viewed as a measure of the unit value of oil lost in a spill. They argue that this is will be positively related to spill prevention. Their reduced form model results from the substitution of the various hypothesised functions in to the original specification, leading to an estimating equation that includes weather conditions, age and size of vessel, US coastguard effort in regulation enforcement, the real price of oil, shipbuilding and repair costs as explanatory variables..

They model this series using Tobit analysis. A number of indicators of regulatory effort were also employed. In their 1995 paper, only one of the regulatory measures was statistically significant at the 5 per cent level, and that was the dummy that split US from non US tankers. In the 1996 paper, which modelled ship motion and ship integrity accidents, none of the regulation or price variables were statistically significant. On the other hand, the span of time covered by the data set is too short to expect such variables to be statistically significant.  In a later paper, Talley, Jin and Kite Powell (2001) apply the same methodology to a study of ‘in-water’ and ‘out of water’ oil spills after the enactment of the US OPA 90 in 1990. This paper did not include any regulatory or ‘economic’ variables, other than a dummy for the flag of the vessel, the only significant factor other than those identifying ship and accident type, operation and weather conditions.

Kim (2002) has studied trends in the frequency and size of oil spills in US waters over the period 1973 - 1996, using data from the US Coast Guard. Although he cites papers that identify various factors explaining oil spill numbers and tonnage spilled, he does not develop any explanatory model for the data. This is rectified in a recent study by Homan and Steiner (2008), of OPA 90’s impact in reducing oil spills in the USA. Using annual  and quarterly data on the number of spills from oil tanks or oil barges, they estimate a count model that includes the following variables as explanatory factors in determining the expected number of spills in any given year. Their model is expressed as




+
     +
     +/-     -
    -


SPILLS = f(TRAFFIC, TANK, SIZE, OILP, REPAIR)
(1)

Where they hypothesise that spill numbers will be positively related to the volume of oil traffic (TRAFFIC) and the number of tank vessels (TANK), indeterminate with respect to average size, and negative with respect to the oil price and ship repair indices. It is notable that the expected sign of the oil price is opposite to that expected by Talley and Anderson (1995). Homan and Steiner then model the impact of regulation by introducing two additional factors, namely a shift dummy to take account of the introduction of OPA 90 from 1991 on, and a measure of the tanker fleet that is double hulled, a consequence of the change in the regulatory environment post OPA90. It is these two variables that are employed to capture the impact of the new regime on US oil spill data. Their data series runs from 1976 to 2004. Their approach is to estimate the model in equation (1) for the time period 1976- 1990, which they label Pre-OPA 90. The model is then re-estimated for the full period, 1976 – 2005, with the addition of the two regulatory variables. Clearly, the double hull variable would contain zero values for this period anyway. This approach permits the quantification of the expected number of spills post OPA-90 if OPA-90 had not been enacted.

Their model is estimated for spills numbers that are defined in terms of different sizes of spills, but the model is the same in both cases. With only 15 annual observations in the Pre-OPA90 case, estimation is problematic. They tried to resolve this by using quarterly versions of the same model. In the annual version, the oil price, tanker numbers and average size were all significant in at least one of the versions of their estimated model.  They found that both the OPA 90 dummy variable and the double hull measure was statistically significant and reduced the expected numbers of spills after 1991. This result applied in both their annual and quarterly models.
Data

The above studies have all used data specific to the US. There is a data set available for worldwide oil spills from barges, combination carriers, and oil tankers, published on the website of the International Tanker Owners Pollution Federation (ITOPF). This data covers the period 1970 – 2005, and records both oil spill numbers and volumes of oil spilled. The data used in this paper is the time series of oil spill numbers, shown in Figure 1. It has been employed in three different variants, namely, all oil spills, small oil spills, and large oil spills. Small oil spills are identified as spills involving between 7 and 700 tonnes of oil, large spills are defined to involve more than 700 tonnes. There are of course many incidents that involve spills of less than 7 tonnes. The information about these spills is not readily available on the ITOPF website. Homan and Steiner’s (2008) study of US oil spills used cut off points of 1000 and 10,000 gallons, which roughly translates into 3.35 and 32.5 tonnes respectively, using the BP (2007) approximate conversion factors of 1 US gallon = .00325 tonnes. These numbers are a lot smaller, with the implication that spill numbers will be much larger than those in the ITOPF data set. It is interesting to note that the numbers of count data follow the same broad trends in both data sets. This suggests that the same sets of factors identified in pervious studies could be used in the modelling of the ITOPF data.

Given the Homan and Steiner model specified in equation, data on the measures of the explanatory variables were collected. This divides into data collected for measuring regulatory enforcement, data for traffic volume, and data reflecting market conditions. The following variables were employed as explanatory factors in the model of the ITOPF data. For market conditions, the real oil price was included, following Homan and Steiner (2008) and Anderson and Talley (1996). The relationship with mean expected number of spills is unclear. On the one hand, Anderson and Talley expected a positive link, because it would reflect higher cargo 
Figure 1.   ITOPF oil spill numbers 1970 – 2005
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Source: www.itopf.org –  Oil spill statistics - accessed January 2008

values, whilst Homan and Steiner expected higher oil prices to induce cargo owners to be more careful with their cargo. This is slightly implausible in that the real actors in any incident are the ship crews, and it is difficult to see how their incentives are changed by fluctuations in the price of the cargo. On the other hand, it can be argued that the real price of oil is a proxy for changing levels of utilisation in the tanker market. High value cargoes mean greater incentive to move cargo more quickly, but pressure to increase turn round time and lower journey time may well lead to greater numbers of incidents and spills, not fewer. The real price of crude oil was measured using the BP (2007) data set, which provides a consistent series for both nominal and real oil prices. Note that this is very different from that used by Homan and Steiner, who used a measure of the net acquisition cost of petroleum to US oil refiners. The model employed also incorporated the level of tanker lay ups, expressed as a percentage of the fleet, as a second indicator of utilisation pressures. Here it is argued that higher lay ups have an opposite effect to higher cargo values, in that they make it more likely that owners will neglect maintenance in order to maintain operations. The higher the lay up, the higher the likelihood of a spill occurring as marginal operators delay or defray maintenance expenditures and try to cut operating costs. Thus the hypothesis is that lay up rates and the real oil price will be positively related to spill numbers. The volume of activity was measured by utilising the Fearnleys estimates of oil and oil products tonne mile movements, which have been published on an annual basis since the 1960’s. It is assumed that the volume of seaborne trade, thus measured, will be positively related to spill numbers. Tanker fleet capacity was also incorporated. The average size of tankers, in deadweight tonnes, was employed. This data was derived from estimates of the total tanker fleet (greater than 10,000dwt) and tanker numbers. The ratio yielded an estimate of average size.  Data on the proportion of double- hull tankers was obtained from E A Gibsons Shipbrokers for the period from 2000. Data for the period before 2000 was received from Dr Homan (2008), who kindly provided the data employed in their US spill number study.

Incorporating regulatory effects is more problematic; apart from the double hull measure, three shift dummy variables were also employed. These were attempts to quantify the possible impacts on spill numbers from the three major changes in the regulatory regime for oil transportation, namely, the introduction of the Maritime Pollution regulations in 1983, the introduction of OPA90, with effect from 1991, and the introduction of the ISM code in 1998. These were all modelled as simple shift dummy variables.

Model Estimation

Estimation of models of count data is usually carried out assuming either a Poisson or Negative binomial distribution for the dependent variable. This is because the observed values are never less than zero, so the data is ‘left censored’. Normally such models are employed with cross section data, but here the data is time series. Wooldridge (1996) notes that this does not create any estimation problems.  The choice between a Poisson or negative binomial model is determined by evaluation of the appropriateness of the Poisson distribution to the empirical data set. The key relationship in the Poisson model is given by
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(2)

where yi is a non-negative integer valued random variable. If the values of yi are independently distributed, the expected value of yi  is given by the  above formula, which is that for a Poisson process.  The function m(xi  is the representation of the set of coefficients (  and exogenous variables (xi ) that generate the conditional mean of the distribution. The independence of observations, required for the Poisson model, is likely to be met for oil spill data. The Poisson model requires that the variance and conditional mean be equal (EViews 2004, p.643). That is
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(3)

In many cases, ‘overdispersion’ occurs, whereby the variance is larger than the conditional mean. The negative binomial model can then be used because in this case the first and second moments of the distributions are given by
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(4)

Where η2 is a measure of the extent to which the conditional variance exceeds the conditional mean (Eviews 2004, p. 644). This ‘overdispersion’ can be identified through the use of two statistical tests, due to Cameron and Trivedi (1990) and Wooldridge (1997). Both of these tests were applied in the estimation process, and where overdispersion was identified, the negative binomial version of the model was estimated. A variety of different formulae are available for estimating the standard 

Table 1 Estimation Results for the Pre and Post double hull models

	1970-1990
	
	
	
	
	1970 - 2005
	
	
	

	Models
	
	
	
	
	Models
	
	
	

	All Spills
	Coefficient
	GLM Robust
	P - Value
	
	All Spills
	Coefficient
	GLM Robust
	P - Value

	
	
	St Error
	
	
	
	
	S. Error
	

	Constant
	2.89400
	4.49E-02
	0.000
	
	Constant
	3.1793
	3.661E-01
	0.000

	Seabtrade
	0.00193
	3.25E-05
	0.000
	
	Seabtrade
	1.710E-04
	2.910E-05
	0.000

	Rloilpr
	0.00725
	3.97E-03
	0.068
	
	Rloilpr
	0.0096
	2.692E-03
	0.000

	Size
	-0.01190
	6.04E-03
	0.049
	
	Size
	-0.0141
	4.293E-03
	0.000

	LayUp
	0.0249
	1.11E-02
	0.024
	
	LayUp
	0.0209
	1.003E-02
	0.037

	
	
	
	
	
	Dhull
	-2.2167
	0.3007
	0.000

	N
	21
	R-squared
	0.720
	
	N
	36
	R-squared
	0.819

	
	
	LR Index
	0.980
	
	
	
	LR Index
	0.930

	Model Type
	Negative Binomial
	
	
	Model Type
	Negative Binomial
	

	Overdispersion tests
	t -statistic
	
	
	Overdispersion tests
	t -statistic
	

	C -T
	0.016
	2.59
	0.006
	
	C -T
	0.016
	2.99
	0.001

	Wooldridge
	0.019
	3.20
	0.020
	
	Wooldridge
	0.023
	2.52
	0.016

	
	
	
	
	
	
	
	
	

	Small Spills 
	Coefficient
	GLM Robust
	P - Value
	
	Small Spills
	Coefficient
	GLM Robust
	P - Value

	
	
	St Error
	
	
	
	
	S. Error
	

	Constant
	1.6948
	7.87E-01
	0.031
	
	Constant
	1.9845
	5.142E-01
	0.0001

	Seabtrade
	0.0002
	4.01E-05
	0.000
	
	Seabtrade
	2.000E-04
	3.920E-05
	0.0000

	Rloilpr
	0.0072
	4.61E-03
	0.118
	
	Rloilpr
	0.0094
	3.502E-03
	0.0072

	Size
	-0.0062
	9.43E-03
	0.511
	
	Size
	-0.0078
	5.724E-03
	0.0004

	LayUp
	0.0406
	1.22E-02
	0.001
	
	LayUp
	0.0350
	1.328E-02
	0.0085

	
	
	
	
	
	Dhull
	-2.2167
	0.3758
	0.0000

	N
	21
	R-squared
	0.590
	
	N
	36
	R-squared
	0.717

	
	
	LR Index
	0.920
	
	
	
	LR Index
	0.930

	Model Type
	Negative Binomial
	
	
	Model Type
	Negative Binomial
	

	Overdispersion tests
	t -statistic
	
	
	Overdispersion tests
	t -statistic
	

	C -T
	0.030
	2.43
	0.025
	
	C -T
	0.030
	2.88
	0.006

	Wooldridge
	0.045
	2.33
	0.030
	
	Wooldridge
	0.045
	2.311
	0.032

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Large Spills
	Coefficient
	GLM Robust
	P - Value
	
	Large Spills
	Coefficient
	GLM Robust
	P - Value

	
	
	S. Error
	
	
	
	
	S. Error
	

	Constant
	2.59900
	5.40E-01
	0.000
	
	Constant
	2.9855
	5.142E-01
	0.0001

	Seabtrade
	0.00015
	4.21E-05
	0.000
	
	Seabtrade
	1.330E-04
	3.810E-05
	0.0005

	Rloilpr
	0.00347
	5.24E-03
	0.118
	
	Rloilpr
	0.0076
	3.845E-03
	0.0479

	Size
	-0.01330
	7.96E-03
	0.095
	
	Size
	-0.0189
	5.960E-03
	0.0016

	LayUp
	-0.02075
	1.64E-02
	0.206
	
	LayUp
	-0.0193
	1.439E-02
	0.1795

	
	
	
	
	
	Dhull
	-3.3068
	0.5931
	0.0000

	N
	21
	R-squared
	0.700
	
	N
	36
	R-squared
	0.740

	
	
	LR Index
	0.370
	
	
	
	LR Index
	0.475

	Model Type
	Poisson Count
	
	
	Model Type
	Poisson Count
	

	Overdispersion tests
	t -statistic
	
	
	Overdispersion tests
	t -statistic
	

	C -T
	0.0129
	0.790
	0.4391
	
	C -T
	0.023
	1.942
	0.06

	Wooldridge
	0.0205
	0.945
	0.3559
	
	Wooldridge
	0.027
	1.613
	0.12


errors of the explanatory variables. Given the relative lack of observations, the most robust estimates were selected, whereby the estimates are less sensitive to misspecification of the underlying distributions of the data.  This results in larger standard errors compared to the standard formulae, and is thus a stricter test of the significance of the variables incorporated into the model. These are the generalised linear model standard errors that are reported in the results.

The model was estimated for two time periods, following Homan and Steiner (2008). The data set was split at 1990, as 1991 marked the implementation of OPA 90. This model excludes both the double hull and OPA 90 shift dummy variables. This model can be used to generate expected numbers of spills in the period 1991 – 2005, assuming that OPA 90 and double hull technology were never introduced.  A second model, which covers the full sample period, is also estimated, to provide tests of the significance of the post OPA 90 measures and to determine the fit of the model. These models are labelled ‘Pre Dhull’ (1970- 1990) and ‘Post Dhull’ (1970 – 2005) in figures 2 to 4.

Results 

Table 1 presents the results of estimating the Pre-Double Hull model for the period 1970-1990 for the three data sets, namely all oil spills, small oil spills and large oil spills.  It should be emphasised that the numbers of observations available for estimation are quite small, so all the results may well not be as robust as one would like. The left hand columns of the table provide the relevant statistical results for the 1970 -1990 data, the right hand columns for the period 1970 -2005. The Cameron Trivedi and Wooldridge tests indicated that significant overdispersion was present in four of the six models estimated, so the reported results are for the Poisson count model for the Large Spills data sets only, the rest being estimated using Negative binomial combined with the estimated value of overdispersion derived from the Woodridge test result. All models were estimated using Eviews 5.0, using quasi-maximum likelihood and robust standard error covariance estimates. It should be noted that these methods mean that the conventional R –squared measure of association is not an appropriate measure of ‘goodness of fit’. Instead, Eviews reports a Likelihood ratio index, which is defined as the ratio of the log likelihoods obtained assuming the model with all the explanatory variables included and the value of  the log likelihood generated by a model which contains only a constant. This has a theoretical spread between 1 and zero, and is interpreted in a similar way to the R- 

squared index. The likelihood ratios vary between 0.98 and 0.92 for the ‘All Spills’ and ‘Small spills’ models (all negative binomial models). Estimated values are a lot lower for the ‘Large Spills’ models, at 0.37 and 0.48 respectively for the 1970-1990 and 1970 -2005 periods.

For the’ All spills’ models, all reported coefficients are statistically significant at the 5 per cent level or more, except for the real oil price variable for the period 1970-1990. The ‘Small Spills’ model has insignificant coefficients for real oil price and tanker size for the period 1970-1990, but both become significant in the larger data set, which is why they are retained in the model.  The ‘Large Spills’ results are quite different. Here, the Lay Up variable is not significant in either of the data periods, and the real oil price is just significant only in the 1970-2005 period.

What of the variables that are significant? Seaborne trade (measured in billion tonne miles) is highly significant in every model. There appears to be a positive relation between the two series, as was expected. But note that it is not possible to compute the marginal effect of a change in the value of the explanatory variable in these models in the way that is obvious in an OLS model; instead, the mean value of spills conditioned on any preset combination of values of explanatory variables can be generated.  The real oil price has an estimated positive effect on oil spill numbers in the cases when it is significant, namely, in all models for the period 1970-2005, but in none of the models for the period 1970-1990. Lay Up is significant and positive in the All Spills and Small Spills data sets for both periods, but has no effect on the expected numbers of Large Spills in either period. The tanker size variable is significant and negatively related to expected spill numbers in every case, except for the ‘Small spills’ model for 1970-1990. This is a different result from Homan and Steiner (2008), who found that size (where it was significant) was positively related to spill numbers. They also obtained a negative sign on the real oil price variable, in contrast to the results reported here. The differences may be due to the use of different data sets, or perhaps in model specification, since the measure for tanker numbers is not employed in the present model whilst lay up proportions have been.

Turning to the additional variables included in the ‘Post double hull’ models, it is noted that the double hull variable is highly significant in all spill types and of the expected negative sign. This was the only variable that was found to have a statistically significant effect from the list of possible variables listed earlier. Dummy variables for OPA 90, the implementation of MarPol, and of the ISM code were all included in the original models for the full data period, but none were found to be statistically significant. Again this is contrast to the reported results of Homan and Steiner, as the dummy variable of the implementation of OPA 90 after 1991 was significant and negative in all their estimated models for the period 1976-2004. The difference in the significance of the dummy variable has a possible interpretation in that US compliance may be more effective than the level of compliance achieved worldwide. This is an interesting possibility, but, given the data limitations, the difference needs to be supported by other evidence before too great a weight is attached to it.

Quantifying the impact of double hull technology

Whilst the reported results differ quite significantly form those of Homan and Steiner, there is one area which results were similar, in that there is a demonstrable significant negative effect on oil spill numbers post the mid 1990’s. The estimated ‘pre-double hull’ (1970 -1990) models can be used to generate expected oil spill numbers for the period 1991 – 2005, given the values of the explanatory variables over the period. Note this implies that double hull technology would not have been mandatory. The forecasts derived from the models can then be compared with the actual behaviour of oil spill numbers, and the forecast values of oil spill numbers using the ‘post double hull’ models for the period 1970 2005.

These results are best shown graphically. Figure 2, 3 and 4 present the results of the exercise for the ‘All spills’, ‘Small spills’ and ‘Large spills’ cases. It is very clear that double hull technology on its own has had a significant impact on the time path of spill numbers over the past 15 years. For the 1970-1990 ‘All spills’ model, the average number of oil spills that are predicted for the years 2000-2005 is 72 per year. The actual average for the period is 21 per year. The ‘post double hull’ forecast average for the period is 20 per year. For the ‘small spills’ model, the results imply averages of 52 for pre –double hull, and 17 for both actual and post double hull model predictions. For the ‘Large spills model’, the results imply a ‘pre double hull’ forecast of 22. The actual number averaged 4 per year, whilst the ‘post double hull’ model predicts an average of 3 per year.

Figure 2  Actual and forecast spill numbers for ‘All spills’ 1970-2005
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Figure 3
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Figure 3
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Figure 4

[image: image9.emf]Large Spills: Actual, pre dhull and post dhull forecasts
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Conclusions

This paper has presented the results of developing some explanatory models of worldwide oil spill data, using the information available from the International Tanker Owners Pollution Federation. A model was developed which incorporated a number of variables suggested by the extant literature, but which was modified in a number of respect. The results are broadly in line with previous research findings, but one or two issues have emerged. First, the link between real oil prices and oil spills was found to be consistently positive, in contrast to Homan and Steiner, but possibly consonant with Talley and Anderson. Second, average tanker size was found to be negatively related to the ITOPF data. This may be a result of not including tanker numbers in the explanatory set, and is something worth pursuing. On the other hand, Anderson and Talley (1995) also found a statistically significant negative size effect on their study; our results are consistent with their findings. The new variable introduced in the model, lay up proportion, seemed to work well in the small spill model but was not significant in explaining large spills. Perhaps there are too few of these in total to be affected by variations in the utilisation of the tanker fleet. The impact of OPA 90 on the data was clearly identifiable through the role of the double- hull variable, which was highly significant in explaining the reduction in expected oil spill numbers. 

However, none of the shift dummy variables, introduced to model the separate effects of MarPol, ISM or OPA 90 itself added anything in terms of explanatory power. This is in sharp contrast to the findings of Homan and Steiner for their US data. It might be that the US regulatory regime is more effective than that for the world generally, but this implication needs further research before it can be confirmed. The estimated models were used to show the differences between the expected spill numbers that would have occurred, given the same values of seaborne trade, real oil prices, and lay ups, over the period 2000- 2005. It was shown that in all cases studied, the average spill numbers for the period were significantly lower than if OPA 90 had not introduced double hull technology, and the predicted values for the post double hull models were extremely close to the actual values observed for the period, 

Some caveats remain. The numbers of observations are small, so the results may not be robust, despite the use of robust standard errors. The models themselves though, show great potential for further applications should fuller data sets become available.
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	Average Spill numbers 2000 - 2005

	
	Actual
	Forecast

	
	
	 D Hull
	No D Hull

	All Spills
	20
	21
	72

	Small Spills
	17
	17
	52

	Large Spills
	4
	3
	22
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